Math 142 Exam 3 Solutions Fall 2004

PRINT Your Name:
There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.
If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. If you would like, I will leave your exam outside my office after I have graded it. (I will send you an e-mail when I am finished with it.) You may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 6:00 PM today.

1. Find $\int \cos ^{3} x d x$. Check your answer.

Save $\cos x$. Convert the other two $\cos x$'s to $\sin x$ using $\cos ^{2} x=1-\sin ^{2} x$. Let $u=\sin x$. It follows that $d u=\cos x d x$. We see that

$$
\begin{gathered}
\int \cos ^{3} x d x=\int \cos ^{2} x \cos x d x=\int\left(1-\sin ^{2} x\right) \cos x d x=\int\left(1-u^{2}\right) d u \\
=u-\frac{u^{3}}{3}+C=\sin x-\frac{\sin ^{3} x}{3}+C
\end{gathered}
$$

Check: The derivative of the proposed answer is

$$
\cos x-\sin ^{2} x(\cos x)=\cos x\left(1-\sin ^{2} x\right)=\cos ^{3} x
$$

2. Find $\int \cos ^{2} x d x$.

We see that

$$
\int \cos ^{2} x d x=\frac{1}{2} \int(1+\cos 2 x) d x=\frac{1}{2}\left(x+\frac{\sin 2 x}{2}\right)+C
$$

3. Find $\int x \ln x d x$. Check your answer.

We apply integration by parts: $\int u d v=u v-\int v d u$ with $u=\ln x$ and $d v=x d x$. We see that $d u=\frac{1}{x} d x, v=\frac{x^{2}}{2}$, and

$$
\int x \ln x d x=\frac{x^{2}}{2} \ln x-\int \frac{x}{2} d x=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}+C
$$

Check: The derivative of the proposed answer is

$$
\frac{x^{2}}{2} \frac{1}{x}+x \ln x-\frac{x}{2}=x \ln x
$$

4. Find $\int \frac{x+1}{(x-3)^{2}} d x$. Check your answer.

Multiply both sides of

$$
\frac{x+1}{(x-3)^{2}}=\frac{A}{(x-3)}+\frac{B}{(x-3)^{2}}
$$

by $(x-3)^{2}$ to see that

$$
x+1=A(x-3)+B
$$

It follows that

$$
x+1=A x+(-3 A+B) .
$$

Equate the corresponding coefficients to see that $A=1$ and $-3 A+B=1$. Thus, $B=4$. We verify that

$$
\frac{1}{(x-3)}+\frac{4}{(x-3)^{2}}=\frac{(x-3)+4}{(x-3)^{2}}=\frac{x+1}{(x-3)^{2}}
$$

Now we do the integral:

$$
\int \frac{x+1}{(x-3)^{2}} d x=\int \frac{1}{(x-3)}+\frac{4}{(x-3)^{2}} d x=\ln |x-3|-\frac{4}{x-3}+C \text {. }
$$

5. Find $\int \frac{1}{\sqrt{1+x^{2}}} d x$. Check your answer.

We will use trig substitution. Let $x=\tan \theta$. It follows that $d x=\sec ^{2} \theta d \theta$ and $\sqrt{1+x^{2}}=\sqrt{1+\tan ^{2} \theta}=\sqrt{\sec ^{2} \theta}=\sec \theta$. Thus,

$$
\begin{gathered}
\int \frac{1}{\sqrt{1+x^{2}}} d x=\int \frac{\sec ^{2} \theta}{\sec \theta} d \theta=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C \\
=\ln \left|\sqrt{1+x^{2}}+x\right|+C
\end{gathered}
$$

Check: The derivative of $\ln \left(\sqrt{1+x^{2}}+x\right)$ is

$$
\frac{\frac{2 x}{2 \sqrt{1+x^{2}}}+1}{\sqrt{1+x^{2}}+x}=\frac{\frac{x}{\sqrt{1+x^{2}}}+1}{\sqrt{1+x^{2}}+x}=\frac{x+\sqrt{1+x^{2}}}{\left(\sqrt{1+x^{2}}+x\right) \sqrt{1+x^{2}}}=\frac{1}{\sqrt{1+x^{2}}}
$$

6. Find $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\sin x}{x}$.

The answer is $\frac{\frac{\sqrt{2}}{2}}{\frac{\pi}{4}}$.
7. Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=\left(\frac{n+3}{n}\right)^{n}$.

The answer is

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{n+3}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{3}{n}\right)^{n}=e^{3}
$$

because we know that $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}$.
8. Find $\int_{1}^{3} \frac{1}{(x-2)^{2}} d x$.

Look at the graph. This integral represents the area between a curve and the x-axis. The curve is ABOVE the x-axis. The integral is either a positive number or $+\infty$. If your answer is a negative number, then your answer is total nonsense and you will recieve ZERO points.

$$
\begin{gathered}
\int_{1}^{3} \frac{1}{(x-2)^{2}} d x=\lim _{b \rightarrow 2^{-}} \int_{1}^{b} \frac{1}{(x-2)^{2}} d x+\lim _{a \rightarrow 2^{+}} \int_{a}^{3} \frac{1}{(x-2)^{2}} d x \\
=\lim _{b \rightarrow 2^{-}}-\left.(x-2)^{-1}\right|_{1} ^{b}+\lim _{a \rightarrow 2^{+}}-\left.(x-2)^{-1}\right|_{a} ^{3} \\
=\lim _{b \rightarrow 2^{-}} \frac{-1}{(b-2)}+\frac{1}{(1-2)}+\lim _{a \rightarrow 2^{+}} \frac{-1}{(3-2)}+\frac{1}{(a-2)}=+\infty-1+\infty-1=+\infty .
\end{gathered}
$$

9. Does the series $\sum_{k=1}^{\infty} \frac{1}{k}$ converge or diverge? If the series converges, what is its sum? Explain your answer.
This series diverges. Indeed, the picture shows that the partial sum $s_{n}=\sum_{k=1}^{n} \frac{1}{k}$ is at least as large as

$$
\int_{1}^{n+1} \frac{1}{x} d x=\left.\ln x\right|_{1} ^{n+1}=\ln (n+1)
$$

The sum of the series is the limit of the sequence of partial sums and it is clear that $\lim _{n \rightarrow \infty} s_{n} \geq \lim _{n \rightarrow \infty} \ln (n+1)=\infty$.
10. Does the series $\sum_{k=1}^{\infty} \frac{4}{7^{k}}$ converge or diverge? If the series converges, what is its sum? Explain your answer.
This series is the geometric series with initial term $a=\frac{4}{7}$ and ratio $r=\frac{1}{7}$. We see that $-1<r<1$. It follows that the geometric series converge to the sum $\frac{a}{1-r}=\frac{\frac{4}{7}}{1-\frac{1}{7}}=\frac{4}{7-1}=\frac{2}{3}$.

