April 13, 2011 Quizzes 12 and 13 Section 3 8:00

Does the series $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ converge? Justify your answer very thoroughly. Use complete sentences.

We apply the integral test. We see that $f(x) = \frac{1}{x\sqrt{\ln x}}$ is a positive decreasing function. The integral test guarantees that the series $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ and the integral $\int_{2}^{\infty} \frac{1}{x\sqrt{\ln x}} dx$ both converge or both diverge. We compute the integral. Let $u = \ln x$. It follows that $du = \frac{1}{x}dx$. When x = 2, we have $u = \ln 2$. When x = 1 goes to infinity, then x = 1 also goes to infinity. We have

$$\int_{2}^{\infty} \frac{1}{x\sqrt{\ln x}} dx = \int_{\ln 2}^{\infty} u^{-1/2} du = \lim_{b \to \infty} 2\sqrt{u} \bigg|_{\ln 2}^{b} = \lim_{b \to \infty} (2\sqrt{b} - 2\sqrt{\ln 2}) = \infty.$$

The integral diverges. Thus, the series $\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$ also diverges.

Evaluate the indefinite integral $\int \frac{t}{1-t^8} dt$ as a power series. What is the radius of convergence?

Answer. The geometric series $\sum_{n=0}^{\infty} (t^8)^n$ converges to $\frac{1}{1-t^8}$ for $-1 < t^8 < 1$. Notice that $-1 < t^8 < 1$ if and only if -1 < t < 1. So

$$\sum_{n=0}^{\infty} t^{8n} = \frac{1}{1 - t^8} \quad \text{for } -1 < t < 1.$$

Multiply by t to see that

$$\sum_{n=0}^{\infty} t^{8n+1} = \frac{t}{1-t^8} \quad \text{for } -1 < t < 1.$$

Integrate to see that

$$\sum_{n=0}^{\infty} \frac{t^{8n+2}}{8n+2} + C = \int \frac{t}{1-t^8} dt \quad \text{for } -1 < t < 1.$$