Quiz 9 - March 30, 2011 - Section 3 - 8:00-8:50 recitation.
Does the series $\sum_{n=2}^{\infty} \frac{1+\sin n}{10^{n}}$ converge? Justify your answer very thoroughly. Use complete sentences.

We compare $\sum_{n=2}^{\infty} \frac{1+\sin n}{10^{n}}$ to $\sum_{n=2}^{\infty} \frac{2}{10^{n}}$. We know that $\sum_{n=2}^{\infty} \frac{2}{10^{n}}$ is a geometric series with ratio $\frac{1}{10}$. This ratio is between -1 and 1 . Thus, $\sum_{n=2}^{\infty} \frac{2}{10^{n}}$ converges. We see that $0 \leq \frac{1+\sin n}{10^{n}} \leq \frac{2}{10^{n}}$. The comparison test yields that $\sum_{n=2}^{\infty} \frac{1+\sin n}{10^{n}}$ also converges.

