Quiz 12, February 16, 2016

Find $\int \frac{1}{(x+1)\left(x^{2}+1\right)} d x$.
Answer: We use the technique of partial fractions and look for numbers A, B, and C with

$$
\frac{1}{(x+1)\left(x^{2}+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^{2}+1}
$$

Multiply both sides by $(x+1)\left(x^{2}+1\right)$ and equate the corresponding coefficients to see that

$$
\begin{aligned}
1 & =A\left(x^{2}+1\right)+(B x+C)(x+1) \\
& =x^{2}(A+B)+x(B+C)+(A+C)
\end{aligned}
$$

hence,

$$
\begin{aligned}
& 0=A+B \\
& 0=B+C \\
& 1=A+C
\end{aligned}
$$

Therefore, $A=-B, C=-B$, and $1=-B-B$. Thus, $B=\frac{-1}{2}$ and $A=C=\frac{1}{2}$. We have shown that

$$
\frac{1}{(x+1)\left(x^{2}+1\right)}=\frac{1}{2}\left[\frac{1}{x+1}+\frac{-x+1}{x^{2}+1}\right]
$$

We verify the most recent equation before going any further. The right side is equal to

$$
\frac{1}{2}\left[\frac{x^{2}+1+\left(1-x^{2}\right)}{(x+1)\left(x^{2}+1\right)}\right]=\frac{1}{(x+1)\left(x^{2}+1\right)}
$$

as claimed. We now see that

$$
\begin{gathered}
\int \frac{1}{(x+1)\left(x^{2}+1\right)} d x=\frac{1}{2} \int\left[\frac{1}{x+1}+\frac{-x+1}{x^{2}+1}\right] d x= \\
\frac{1}{2}\left[\ln |x+1|-\frac{1}{2} \ln \left(x^{2}+1\right)+\arctan x\right]+C
\end{gathered}
$$

