Quiz 9, September 20. 2016

Find $\int \frac{8 d x}{\left(4 x^{2}+1\right)^{2}}$.
Answer: Let $2 x=\tan \theta$. It follows that $2 d x=\sec ^{2} \theta d \theta$ and $4 x^{2}+1=\tan ^{2} \theta+1=\sec ^{2} \theta$. The original integral is

$$
\begin{aligned}
\int \frac{8\left(\frac{1}{2}\right) \sec ^{2} \theta d \theta}{\sec ^{4} \theta}= & \int \frac{4}{\sec ^{2} \theta} d \theta=\int \cos ^{2} \theta d \theta=2 \int(1+\cos 2 \theta) d \theta=\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \\
& =\frac{2 x}{\sqrt{4 x^{2}+1}}+C=2\left(\theta+\frac{2 \sin (\theta) \cos (\theta)}{2}\right)+C
\end{aligned}
$$

Draw a right triangle with $2 x=\tan \theta=\frac{\text { opposite }}{\text { adjacent }}$. So this triangle has $2 x$ on the opposite, 1 on the adjacent, and $\sqrt{4 x^{2}+1}$ on the hypotenuse. So $\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{2 x}{\sqrt{4 x^{2}+1}}$ and $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{1}{\sqrt{4 x^{2}+1}}$. Our integral is equal to
$2\left(\theta+\frac{2 \sin (\theta) \cos (\theta)}{2}\right)+C=2\left(\arctan (2 x)+\frac{2 x}{4 x^{2}+1}\right)+C=2 \arctan (2 x)+\frac{4 x}{4 x^{2}+1}+C$.
Check: The derivative of the proposed answer is

$$
\begin{gathered}
\frac{2 \cdot 2}{(2 x)^{2}+1}-4 x \frac{8 x}{\left(4 x^{2}+1\right)^{2}}+\frac{4}{4 x^{2}+1}=\frac{8}{4 x^{2}+1}+\frac{-32 x^{2}}{\left(4 x^{2}+1\right)^{2}}=\frac{8\left(4 x^{2}+1\right)-32 x^{2}}{\left(4 x^{2}+1\right)^{2}} \\
=\frac{8 d x}{\left(4 x^{2}+1\right)^{2}} .
\end{gathered}
$$

