Quiz 8, February 2, 2015

Find $\int \frac{d x}{\left(x^{2}-1\right)^{3 / 2}}$. (In this problem $1<x$.)
Answer: Let $x=\sec \theta$. It follows that $d x=\sec \theta \tan \theta d \theta$ and $x^{2}-1=\sec ^{2} \theta-1=\tan ^{2} \theta$. The original integral is

$$
\int \frac{\sec \theta \tan \theta d \theta}{\tan ^{3} \theta}=\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=\int \csc \theta \cot \theta d \theta=-\csc \theta+C .
$$

Draw a right triangle with $x=\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}$. So this triangle has x on the hypotenuse, 1 on the adjacent, and $\sqrt{x^{2}-1}$ on the opposite. So $\csc \theta=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{x}{\sqrt{x^{2}-1}}$. Our integral is equal to

$$
-\csc \theta+C=\frac{-x}{\sqrt{x^{2}-1}}+C
$$

Check: The derivative of the proposed answer is
$-x(-1 / 2)\left(x^{2}-1\right)^{-3 / 2}(2 x)-\left(x^{2}-1\right)^{-1 / 2}=\left(x^{2}-1\right)^{-3 / 2}\left(x^{2}-\left(x^{2}-1\right)\right)=\left(x^{2}-1\right)^{-3 / 2} . \downarrow$

