Quiz 7, January 27, 2015

Find $\int \sec ^{4} \theta d \theta$.
Answer: We have to intgegrate an even power of $\sec \theta$ times some power of $\tan \theta$. We save $\sec ^{2} \theta$, convert all remaining sec θ 's into $\tan \theta$'s (using $\sec ^{2} \theta=\tan ^{2} \theta+1$) and let $u=\tan \theta$ (and so $d u=\sec ^{2} \theta d \theta$). So

$$
\int \sec ^{4} \theta d \theta=\int\left(\tan ^{2} \theta+1\right) \sec ^{2} \theta d \theta=\int\left(u^{2}+1\right) d u=\frac{u^{3}}{3}+u+C=\frac{\tan ^{3} \theta}{3}+\tan \theta+C
$$

Check: The derivative of the proposed answer is

$$
\tan ^{2} \theta \sec ^{2} \theta+\sec ^{2} \theta=\sec ^{2} \theta\left(\tan ^{2} \theta+1\right)=\sec ^{4} \theta
$$

