Find $\int \frac{4 t^{3}-t^{2}+16 t}{t^{2}+4} d t$.
Answer: First do a long division to write the fraction as a proper fraction. Observe that $t^{2}+4$ goes into $4 t^{3}-t^{2}+16 t, 4 t-1$ times with a remainder of 4 ; hence,

$$
\frac{4 t^{3}-t^{2}+16 t}{t^{2}+4}=4 t-1+\frac{4}{t^{2}+4} .
$$

It is a good idea to check this much before proceeding. The right side is

$$
4 t-1+\frac{4}{t^{2}+4}=\frac{(4 t-1)\left(t^{2}+4\right)+4}{t^{2}+4}=\frac{4 t^{3}+16 t-t^{2}-4+4}{t^{2}+4}
$$

and this is the left side. So,

$$
\int \frac{4 t^{3}-t^{2}+16 t}{t^{2}+4} d t=\int 4 t-1+\frac{4}{t^{2}+4} d t=2 t^{2}-t+\int \frac{4}{t^{2}+4} d t .
$$

There are three ways to find $\int \frac{4}{t^{2}+4} d t$. There is a formula for $\int \frac{d u}{u^{2}+a^{2}}$, but I don't know the formula, so I don't use that. One can use "trig substitution". I will teach this in section 8.4. I know and will use $\int \frac{d u}{u^{2}+1}=\arctan u+C$. I wish the 4 in the denominator were a 1 ; so, I divide top and bottom by 4: Our integral is

$$
=2 t^{2}-t+\int \frac{1}{(t / 2)^{2}+1} d t=2 t^{2}-t+2 \int \frac{1}{u^{2}+1} d u
$$

where $u=t / 2$ and $d u=d t / 2$. Our integral is

$$
=2 t^{2}-t+2 \arctan u+C=2 t^{2}-t+2 \arctan (t / 2)+C
$$

Check. The derivative of the proposed answer is

$$
4 t-1+2 \frac{\frac{1}{2}}{(t / 2)^{2}+1}=4 t-1+\frac{1}{(t / 2)^{2}+1}
$$

Multiply top and bottom by 4 to see that the derivative of the proposed answer is

$$
4 t-1+\frac{4}{t^{2}+4}=\frac{(4 t-1)\left(t^{2}+4\right)+4}{t^{2}+4}=\frac{4 t^{3}+16 t-t^{2}-4+4}{t^{2}+4}=\frac{4 t^{3}+16 t-t^{2}}{t^{2}+4}
$$

