Quiz 29, April 14, 2016

Find a polynomial which approximates $F(x)=\int_{0}^{x} \arctan (t) d t$ with an error at most $\frac{1}{1000}$ when $0 \leq x \leq \frac{1}{2}$.

Answer: We know $\frac{1}{1-y}=1+y+y^{2}+y^{3}+\ldots$ for $-1<y<1$. Replace y with $-t^{2}$. Notice that $-1<-t^{2}<1$ precisely when $-1<t<1$; hence,

$$
\frac{1}{1+t^{2}}=1-t^{2}+t^{4}-t^{6}+\ldots . \quad \text { for }-1<t<1
$$

Integrate to learn that

$$
\arctan (t)=C+t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\ldots, \quad \text { for }-1<t<1
$$

Plug in $t=0$ to see that $0=C+0$; hence,

$$
\arctan (t)=t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\ldots, \quad \text { for }-1<t<1
$$

Now we are ready to work on the problem,

$$
\begin{aligned}
F(x)= & \int_{0}^{x} \arctan (t) d t=\int_{0}^{x}\left(t-\frac{t^{3}}{3}+\frac{t^{5}}{5}-\frac{t^{7}}{7}+\ldots\right) d t \\
= & \left.\left(\frac{t^{2}}{2}-\frac{t^{4}}{3 \cdot 4}+\frac{t^{6}}{5 \cdot 6}-\frac{t^{8}}{7 \cdot 8}+\ldots\right)\right|_{0} ^{x} \\
& \left(\frac{x^{2}}{2}-\frac{x^{4}}{3 \cdot 4}+\frac{x^{6}}{5 \cdot 6}-\frac{x^{8}}{7 \cdot 8}+\ldots\right)
\end{aligned}
$$

We only consider x with $0 \leq x \leq \frac{1}{2}$. For such x, the Alternating Series Test applies because the series alternates,

$$
\frac{x^{2}}{2}>\frac{x^{4}}{3 \cdot 4}>\frac{x^{6}}{5 \cdot 6}>\cdots
$$

and $\lim _{n \rightarrow \infty} \frac{x^{n}}{(n-1) n}=0$. We would like to pick an even number n with

$$
\frac{x^{n+2}}{(n+1) \cdot(n+2)}<\frac{1}{1000}
$$

for $0 \leq x \leq 1 / 2$. So we want

$$
\frac{1}{2^{n+2}(n+1) \cdot(n+2)}<\frac{1}{1000}
$$

We want

$$
1000 \leq 2^{n+2}(n+1)(n+2)
$$

We see that if $n=6$, then

$$
1000<2^{8}(7)(8)=2^{n+2}(n+1)(n+2)
$$

We conclude that

$$
\frac{x^{2}}{2}-\frac{x^{4}}{3 \cdot 4}+\frac{x^{6}}{5 \cdot 6} \text { approximates } F(x) \text { with an error at most } \frac{1}{1000}, \text { when } 0 \leq x \leq 1 / 2
$$

