Quiz 27, March 31, 2016

Consider the series $f(x)=1-\frac{1}{2}(x-3)+\frac{1}{4}(x-3)^{2}+\cdots+\left(\frac{-1}{2}\right)^{n}(x-3)^{n}+\ldots$.
(a) Where does the series converge?
(b) What is the sum of the series?
(c) Integrate the series term-by-term. What is the sum of the new series?

Answer: We see that $f(x)$ is the geometric series with initial term 1 and ratio $r=\frac{-(x-3)}{2}$. Thus, $f(x)$ converges when $-1<\frac{-(x-3)}{2}<1$, or $-2<-(x-3)<2$, or $-2<x-3<2^{\dagger}$, or $1<x<5$.

$$
\text { (a) } f(x) \text { converges for } 1<x<5 \text {. }
$$

If $1<x<5$, then $f(x)=\frac{a}{1-r}=\frac{1}{1-\frac{(x-3)}{2}}=\frac{2}{2+(x-3)}=\frac{2}{x-1}$

$$
\text { (b) If } 1<x<5 \text {, then } \frac{2}{x-1}=f(x) \text {. }
$$

Integrate both sides of the answer to (b) to learn that if $1<x<5$, then

$$
\ln (x-1)+C=x-\frac{1}{2 \cdot 2}(x-3)^{2}+\frac{1}{4 \cdot 3}(x-3)^{3}+\cdots+\frac{(-1)^{n}}{2^{n} \cdot(n+1)}(x-3)^{n+1}+\ldots
$$

Plug in $x=3$ to learn

$$
\ln (2)+C=3 .
$$

So $C=3-\ln 2$ and

$$
\ln (x-1)+3-\ln 2=x-\frac{1}{2 \cdot 2}(x-3)^{3}+\frac{1}{4 \cdot 3}(x-3)^{2}+\cdots+\frac{(-1)^{n}}{2^{n} \cdot(n+1)}(x-3)^{n+1}+\ldots
$$

It will look prettier if we move the 3 to the other side:
(c) If $1<x<5$, then $\ln (x-1)-\ln 2=(x-3)-\frac{1}{2 \cdot 2}(x-3)^{2}+\frac{1}{4 \cdot 3}(x-3)^{3}+\cdots+\frac{(-1)^{n}}{2^{n \cdot(n+1)}}(x-3)^{n+1}+\ldots$.
${ }^{\dagger}$ This one is tricky. In general, if $a<b<c$, then $-c<-b<-a$. For us, $-2<-(x-3)<2$; so $-2<-(-(x-3))<-(-2)$ and this is $-2<x-3<2$.

