Quiz 25, March 29, 2016

Estimate how well $\sum_{n=1}^{4}(-1)^{n+1} \frac{(.01)^{n}}{n}$ approximates $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n}$. Explain your answer very thoroughly.

Answer: We apply the Alternating Series Test to the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n}$. We see that the series is an alternating series; the numbers

$$
\frac{(.01)^{1}}{1}>\frac{(.01)^{2}}{2}>\frac{(.01)^{3}}{3}>\ldots
$$

are decreasing. (There is no ambiguity in this assertion because $\frac{(.01)^{n}}{n}$ equals $\frac{1}{\left(100^{n} n\right)}$; when one changes n to $n+1$, the denominator becomes larger, the numerator is unchanged, and the fraction becomes smaller.) The terms go to zero, that is, $\lim _{n \rightarrow \infty} \frac{(.01)^{n}}{n}=0$. So the Alternating Series Test applies and a partial sum of the series approximates the total sum of the series by at most the absolute value of the next term:

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n}-\sum_{n=1}^{4}(-1)^{n+1} \frac{(.01)^{n}}{n}\right| \leq \frac{(.01)^{5}}{5}=\frac{1}{5 \cdot 10^{10}}
$$

We conclude that

$$
\sum_{n=1}^{4}(-1)^{n+1} \frac{(.01)^{n}}{n} \text { approximates } \sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n} \text { with an error at most } \frac{1}{5 \cdot 10^{10}}
$$

