Quiz 22, March 23, 2016

Does the series $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n} + \sqrt[3]{n}}$ converge? Justify your answer.

Answer: We see that $2\sqrt{n} + \sqrt[3]{n} < 3\sqrt{n}$; hence $\frac{1}{3\sqrt{n}} < \frac{1}{2\sqrt{n} + \sqrt[3]{n}}$. We know that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is the *p*-series with $p = \frac{1}{2} < 1$; hence $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges. It follows that $\sum_{n=1}^{\infty} \frac{1}{3\sqrt{n}}$ also diverges. Use part (b) of the comparison test to see that $\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n} + \sqrt[3]{n}}$ diverges.