Quiz 22, March 23, 2016

Does the series $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}+\sqrt[3]{n}}$ converge? Justify your answer.
Answer: We see that $2 \sqrt{n}+\sqrt[3]{n}<3 \sqrt{n}$; hence $\frac{1}{3 \sqrt{n}}<\frac{1}{2 \sqrt{n}+\sqrt[3]{n}}$. We know that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is the p-series with $p=\frac{1}{2}<1$; hence $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges. It follows that $\sum_{n=1}^{\infty} \frac{1}{3 \sqrt{n}}$ also diverges. Use part (b) of the comparison test to see that $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}+\sqrt[3]{n}}$ diverges.

