Quiz 22, November 15, 2016

Let $f(x)=\sum_{n=1}^{\infty} \frac{4^{n} x^{2 n}}{n}$. For which x does $f(x)$ converge? For which x does $f(x)$ diverge? Explain thoroughly. Write complete thoughts.

Answer: Observe that $f(0)$ converges. Fix a number x with $x \neq 0$. We apply the ratio test. Let
$\rho=\lim _{n \rightarrow \infty} \frac{\frac{4^{n+1}|x|^{2(n+1)}}{n+1}}{\frac{4^{n}|x|^{2 n}}{n}}=\lim _{n \rightarrow \infty} \frac{4^{n+1}|x|^{2(n+1)}}{n+1} \frac{n}{4^{n}|x|^{2 n}}=\lim _{n \rightarrow \infty} 4|x|^{2} \frac{n}{n+1}=\lim _{n \rightarrow \infty} 4|x|^{2} \frac{1}{1+\frac{1}{n}}=4|x|^{2}$.
If $\rho<1$, then $f(x)$ converges. If $1<\rho$, then $f(x)$ diverges. We will need to use a different test when $\rho=1$.

We see that $\rho<1$ when $4|x|^{2}<1$. The most recent inequality is equivalent to $x^{2}<\frac{1}{4}$ and this is equivalent to $-\frac{1}{2}<x<\frac{1}{2}$.

We see that $1<\rho$, when $1<4 x^{2}$. The most recent inequality is equivalent to $\frac{1}{4}<x^{2}$ (or $x^{2}<-\frac{1}{4}$ but a perfect square is never negative). Thus $1<\rho$ when $\frac{1}{2}<x$ or when $x<-\frac{1}{2}$.

We study the end points seperately.
We see that

$$
f\left(\frac{1}{2}\right)=\sum_{n=1}^{\infty} \frac{4^{n}\left(\frac{1}{2}\right)^{2 n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which is the harmonic series which diverges.
We see that

$$
f\left(-\frac{1}{2}\right)=\sum_{n=1}^{\infty} \frac{4^{n}\left(-\frac{1}{2}\right)^{2 n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{2 n}}{n}=\sum_{n=1}^{\infty} \frac{1}{n}
$$

which is also the harmonic series which still diverges.
Thus, $f(x)$ converges for $-\frac{1}{2}<x<\frac{1}{2}$ and diverges everywhere else.

