Quizzes 21 and 22, March 22, 2016

Question 1. Does the series $\sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}}$ converge? Justify your answer.
Answer: Compare the given series to $\sum_{n=1}^{\infty} \frac{1}{e^{n}}$. Notice that $\frac{e^{n}}{1+e^{2 n}}$ is positive and

$$
\frac{e^{n}}{1+e^{2 n}}<\frac{1}{e^{n}}
$$

because $e^{2 n}<1+e^{2 n}$. The series $\sum_{n=1}^{\infty} \frac{1}{e^{n}}$ is the geometric series with initial term $a=\frac{1}{e}$ and ratio $r=\frac{1}{e}$. We see that $-1<\frac{1}{e}<1$; so the geometric series $\sum_{n=1}^{\infty} \frac{1}{e^{n}}$ converges. It follows from the first part of the comparison test that

$$
\text { the series } \sum_{n=1}^{\infty} \frac{e^{n}}{1+e^{2 n}} \text { also converges. }
$$

Question 2. Consider the sequence $a_{1}=2$, $a_{2}=2+\frac{1}{2}, a_{3}=2+\frac{1}{2+\frac{1}{2}}, a_{4}=2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}, \ldots$. Assume the the sequence converges. Find the limit of the sequence.

Answer: This sequence is given recursively, $a_{n+1}=2+\frac{1}{a_{n}}$. We are told that the sequence converges. Let $L=\lim _{n \rightarrow \infty} a_{n}$. Take $\lim _{n \rightarrow \infty}$ of both sides of $a_{n+1}=2+\frac{1}{a_{n}}$ to obtain $L=2+\frac{1}{L}$. Multiply both sides by L : $L^{2}=2 L+1$ or $L^{2}-2 L-1=0$. Use the quadratic formula to see that $L=\frac{2 \pm \sqrt{4+4}}{2}$; so $L=\frac{2 \pm 2 \sqrt{2}}{2}=1 \pm \sqrt{2}$. We see that $1-\sqrt{2}<2<1+\sqrt{2}$. Every term in our sequence is 2 plus something positive; so every term in our sequence is more than 2 . The limit of our sequence is at least 2 . The limit of our sequence is not $1-\sqrt{2}$. The limit of our sequence must equal $1+\sqrt{2}$.

