Quiz 21, November 10, 2016

Estimate how close $\sum_{n=1}^{4}(-1)^{n+1} \frac{(.01)^{n}}{n}$ is to $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n}$ Justify your answer.
Answer: The Alternating Series Test applies to

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n}=+\frac{1}{100}-\frac{1}{2 \times 100^{2}}+\frac{1}{3 \times 100^{3}}-\frac{1}{4 \times 100^{4}}-\frac{1}{5 \times 100^{5}}+\ldots
$$

because the series is an alternating series, the terms in absolute value are decreasing, and the terms go to zero. Thus

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n}-\sum_{n=1}^{N}(-1)^{n+1} \frac{(.01)^{n}}{n}\right| \leq \frac{(.01)^{N+1}}{N+1}
$$

for all N. For us, $N=4$; thus,

$$
\left|\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n}-\sum_{n=1}^{4}(-1)^{n+1} \frac{(.01)^{n}}{n}\right| \leq \frac{(.01)^{5}}{5}
$$

and

$$
\sum_{n=1}^{4}(-1)^{n+1} \frac{(.01)^{n}}{n} \text { approximates } \sum_{n=1}^{\infty}(-1)^{n+1} \frac{(.01)^{n}}{n} \text { with an error at most } \frac{1}{5 \times 100^{5}} .
$$

