Quiz 2, January 19, 2015

Find $\int x^{3} \sqrt{x^{2}+1} d x$.
Answer: Let $u=x^{2}+1$. It follows that $d u=2 x d x$ and $u-1=x^{2}$. So

$$
\begin{gathered}
\int x^{3} \sqrt{x^{2}+1} d x=\frac{1}{2} \int(u-1) \sqrt{u} d u=\frac{1}{2} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
=\frac{1}{2}\left(\frac{2}{5} u^{5 / 2}-\frac{2}{3} u^{3 / 2}\right)+C=\frac{1}{2}\left(\frac{2}{5}\left(x^{2}+1\right)^{5 / 2}-\frac{2}{3}\left(x^{2}+1\right)^{3 / 2}\right)+C .
\end{gathered}
$$

Check: The derivative of the proposed answer is

$$
\frac{1}{2}\left(\left(x^{2}+1\right)^{3 / 2} 2 x-\left(x^{2}+1\right)^{1 / 2} 2 x\right)=x \sqrt{x^{2}+1}\left(\left(x^{2}+1\right)-1\right)=x^{3} \sqrt{x^{2}+1} \checkmark
$$

