Quiz 18, March 3, 2016

Consider the sequence $a_{1}=2$ and $a_{n+1}=\frac{72}{1+a_{n}}$. Asuume the the sequence converges. Find the limit of the sequence.

Answer: We are told that $\lim _{n \rightarrow \infty} a_{n}$ exists; let $L=\lim _{n \rightarrow \infty} a_{n}$. Take $\lim _{n \rightarrow \infty}$ of both sides of

$$
a_{n+1}=\frac{72}{1+a_{n}}
$$

to obtain

$$
L=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{72}{1+a_{n}}=\frac{72}{1+L} .
$$

Solve for $L: L(1+L)=72$ or $L^{2}+L-72=0$ or $(L-8)(L+9)=0$; so L is 8 or -9 . On the other hand, every a_{n} is positive because a_{1} is positive and to get a new a from and old a one adds 1 and divides into 72 . Both of these processes gives a positive answer if the input is positive. So, L must be 8 .

