Quiz 17, March 2, 2016

Consider the series $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$.
(a) Find a closed formula for the partial sum $s_{N}=\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$.
(b) Does the series $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$ converge? If so, find its sum.

Answer:

(a) We see that

$$
\begin{aligned}
s_{N}= & \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right) \\
= & \ln \left(\frac{1}{2}\right)+\ln \left(\frac{2}{3}\right)+\ln \left(\frac{3}{4}\right)+\cdots+\ln \left(\frac{N}{N+1}\right) \\
= & {\left.[\ln (1)-\ln (2)]+[\ln (2)-\ln (3)]+[\ln (3)-\ln (4)]+\frac{2}{3}\right)+\ldots } \\
& \cdots+[\ln (N-1)-\ln (N)]+[\ln (N)-\ln (N+1)] \\
= & \ln (1)-\ln (N+1)=-\ln (N+1) .
\end{aligned}
$$

(b) The sum of the series is the limit of the sequence of partial sums and this is

$$
\lim _{N \rightarrow \infty}-\ln (N+1)=-\infty .
$$

We conclude that

$$
\text { the series } \sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right) \text { diverges to }-\infty \text {. }
$$

