Quiz 16, October 20, 2016

Does the series $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$ converge? Justify your answer.
Answer: We see that the $N^{\text {th }}$ partial sum of the series is

$$
\begin{gathered}
s_{N}=\sum_{n=1}^{N} \ln \left(\frac{n}{n+1}\right)=\left(\ln (1)-\ln (2)^{\dagger}\right)+\left(\ln (2)^{\dagger}-\ln (3)^{\dagger \dagger}\right)+\left(\ln (3)^{\dagger \dagger}-\ln (4)^{\dagger \dagger \dagger}\right)+{ }^{\dagger \dagger \dagger} \ldots \\
\ldots{ }^{\text {䛨 }}+\left(\ln (N-2)^{\ddagger \ddagger \ddagger}-\ln (N-1)^{\ddagger \ddagger}\right)+\left(\ln (N-1)^{\ddagger \ddagger}-\ln (N)^{\ddagger}\right)+\left(\ln (N)^{\ddagger}-\ln (N+1)\right) \\
=\ln (1)-\ln (N+1)=-\ln (N+1) .
\end{gathered}
$$

The sum of the series is the limit of the sequence of partial sums

$$
=\lim _{N \rightarrow \infty} s_{N}=\lim _{N \rightarrow \infty}-\ln (N+1)=-\infty .
$$

Thus the series $\sum_{k=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$ diverges.

