Quiz 13, February 17, 2016

Find $\int_{0}^{2} \frac{1}{1-x^{2}} d x$.
Answer: The function $\frac{1}{1-x^{2}}$ has a veritical asymptote at $x=1$. We put a picture on another page. The integral is

$$
\int_{0}^{2} \frac{1}{1-x^{2}} d x=\lim _{b \rightarrow 1^{-}} \int_{0}^{b} \frac{1}{1-x^{2}} d x+\lim _{a \rightarrow 1^{+}} \int_{a}^{2} \frac{1}{1-x^{2}} d x
$$

We see that $1-x^{2}=(1-x)(1+x)$. We find numbers A and B with

$$
\frac{1}{1-x^{2}}=\frac{A}{1-x}+\frac{B}{1+x} .
$$

Multiply both sides by $1-x^{2}$ to see

$$
1=A(1+x)+B(1-x)
$$

Plug in $x=-1$ to learn that $B=1 / 2$. Plug in $x=1$ to learn that $A=1 / 2$. We have shown that

$$
\frac{1}{1-x^{2}}=\frac{1}{2}\left[\frac{1}{1-x}+\frac{1}{1+x}\right]
$$

We verify before going any further. The right side is

$$
\frac{1}{2} \frac{(1+x)+(1-x)}{(1-x)(1+x)}=\frac{1}{1-x^{2}} .
$$

Now we compute

$$
\begin{aligned}
\int_{0}^{2} \frac{1}{1-x^{2}} d x & =\lim _{b \rightarrow 1^{-}} \int_{0}^{b} \frac{1}{1-x^{2}} d x+\lim _{a \rightarrow 1^{+}} \int_{a}^{2} \frac{1}{1-x^{2}} d x \\
& =\lim _{b \rightarrow 1^{-}} \int_{0}^{b} \frac{1}{2}\left[\frac{1}{1-x}+\frac{1}{1+x}\right] d x+\lim _{a \rightarrow 1^{+}} \int_{a}^{2} \frac{1}{2}\left[\frac{1}{1-x}+\frac{1}{1+x}\right] d x \\
& =\left.\lim _{b \rightarrow 1^{-}} \frac{1}{2}[-\ln |1-x|+\ln |1+x|]\right|_{0} ^{b}+\left.\lim _{a \rightarrow 1^{+}} \frac{1}{2}[-\ln |1-x|+\ln |1+x|]\right|_{a} ^{2} \\
& =\lim _{b \rightarrow 1^{-}} \frac{1}{2}[-\ln |1-b|+\ln |1+b|-(-\ln |1|+\ln |1|)] \\
& \left.+\lim _{a \rightarrow 1^{+}} \frac{1}{2}[-\ln |1-2|+\ln |1+2|-(-\ln |1-a|+\ln |1+a|)] \right\rvert\,
\end{aligned}
$$

We see that $\lim _{b \rightarrow 1^{-}}[-\ln |1-b|]=+\infty$ and $\lim _{a \rightarrow 1^{+}} \ln |1-a|=-\infty$.
We conclude that this integral diverges.

