Quiz 13, October 12, 2016

Find $\int \frac{d x}{4 x^{2}+8 x+13}$. Please check your answer.
The integral is equal to

$$
\int \frac{d x}{4\left(x^{2}+2 x+\boxed{1}\right)+13-4 \boxed{1}}=\int \frac{d x}{(2(x+1))^{2}+9}=\frac{1}{9} \int \frac{d x}{\left(\left(\frac{2}{3}\right)(x+1)\right)^{2}+1}
$$

Let $u=\frac{2}{3}(x+1)$; so $d u=\frac{2}{3} d x$. The integral is equal to

$$
\frac{1}{9} \frac{3}{2} \int \frac{d u}{u^{2}+1}=\frac{1}{6} \arctan (u)+C=\frac{1}{6} \arctan \left(\frac{2}{3}(x+1)\right)+C .
$$

Check: The derivative of the proposed answer is

$$
\frac{1}{6} \frac{\frac{2}{3}}{\left[\left(\frac{2}{3}(x+1)\right)^{2}+1\right]}=\frac{1}{9\left[\frac{4}{9}\left(x^{2}+2 x+1\right)+1\right]}=\frac{1}{4 x^{2}+8 x+13} .
$$

