Quiz 11, September 22, 2016

Find $\int \frac{d x}{\left(x^{2}-1\right)^{2}} d x$.
Answer: We use the technique of partial fractions and look for numbers A, B, C, and D with

$$
\frac{1}{\left(x^{2}-1\right)^{2}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{x+1}+\frac{D}{(x+1)^{2}} .
$$

Multiply both sides by $\left(x^{2}-1\right)^{2}$ and equate the corresponding coefficients to see that

$$
\begin{aligned}
1 & =A(x-1)(x+1)^{2}+B(x+1)^{2}+C(x+1)(x-1)^{2}+D(x-1)^{2} \\
& =A\left(x^{2}-1\right)(x+1)+B\left(x^{2}+2 x+1\right)+C\left(x^{2}-1\right)(x-1)+D\left(x^{2}-2 x+1\right) \\
& =A\left(x^{3}+x^{2}-x-1\right)+B\left(x^{2}+2 x+1\right)+C\left(x^{3}-x^{2}-x+1\right)+D\left(x^{2}-2 x+1\right) \\
& =x^{3}(A+C)+x^{2}(A+B-C+D)+x(-A+2 B-C-2 D)+(-A+B+C+D)
\end{aligned}
$$

hence,

$$
\begin{aligned}
& 0=A+C \\
& 0=A+B-C+D \\
& 0=-A+2 B-C-2 D \\
& 1=-A+B+C+D
\end{aligned}
$$

It follows that

$$
\begin{aligned}
A & =-C \\
0 & =B-2 C+D \\
B & =D \\
1 & =2 C+2 D .
\end{aligned}
$$

The second equation now yields $C=D$; hence, the fourth equation becomess $1=4 D$. We conclude that

$$
D=C=B=\frac{1}{4}, \quad \text { and } \quad A=-\frac{1}{4} .
$$

We have shown that

$$
\frac{1}{\left(x^{2}-1\right)^{2}}=\frac{1}{4}\left[\frac{-1}{x-1}+\frac{1}{(x-1)^{2}}+\frac{1}{x+1}+\frac{1}{(x+1)^{2}}\right] .
$$

We verify the most recent equation before going any further. The right side is equal to

$$
\begin{aligned}
& \frac{1}{4}\left[\frac{-x+2}{(x-1)^{2}}+\frac{x+2}{(x+1)^{2}}\right]=\frac{1}{4}\left[\frac{(-x+2)\left(x^{2}+2 x+1\right)+(x+2)\left(x^{2}-2 x+1\right)}{\left(x^{2}-1\right)^{2}}\right] \\
= & \frac{1}{4}\left[\frac{\left(-x^{3}-2 x^{2}-x\right)+\left(2 x^{2}+4 x+2\right)+\left(x^{3}-2 x^{2}+x\right)+\left(2 x^{2}-4 x+2\right)}{\left(x^{2}-1\right)^{2}}\right]=\frac{1}{4}\left[\frac{4}{\left(x^{2}-1\right)^{2}}\right]
\end{aligned}
$$

$$
=\frac{1}{\left(x^{2}-1\right)^{2}},
$$

as claimed. We now see that

$$
\begin{gathered}
\int \frac{1}{\left(x^{2}-1\right)^{2}} d x=\frac{1}{4} \int\left[\frac{-1}{x-1}+\frac{1}{(x-1)^{2}}+\frac{1}{x+1}+\frac{1}{(x+1)^{2}}\right] d x \\
=\frac{1}{4}\left[-\ln |x-1|-\frac{1}{(x-1)}+\ln |x+1|-\frac{1}{(x+1)}\right]+C .
\end{gathered}
$$

