
Math 142, Final Exam , Spring 2006

There are 20 problems. Each problem is worth 10 points. SHOW your work. Make
your work be coherent and clear. Write in complete sentences whenever this is

possible. CIRCLE your answer. CHECK your answer whenever possible. No
Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website a few hours after the exam is finished.

1. Find

∫

ex

√
ex + 1

dx . Check your answer.

2
√

ex + 1 + C.

The derivative of the proposed answer is

2( 1
2 ) ex

√
ex+1

. X

2. Find

∫

sin3 x cos2 x dx . Check your answer.

The integral is equal to

∫

sin x(1 − cos2 x) cos2 x dx =

∫

sin x(cos2 x − cos4 x) dx.

Let u = cos x . It follows that du = − sin x dx , and the integral is equal to

−
∫

(u2 − u4) du = − cos3 x
3 + cos5 x

5 + C.

The derivative of the proposed answer is

− cos2 x(− sin x) + cos4 x(− sin x) = cos2 x sinx(1 − cos2 x). X

3. Find

∫

√

x2 + 1 dx . Check your answer.

Let x = tan θ . It follows that dx = sec2 θdθ and
√

x2 + 1 = sec θ . So the integral
is equal to

∫

sec3 θdθ.
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Let u = sec θ and dv = sec2 θdθ . It follows that du = sec θ tan θdθ and v = tan θ .
Apply integration by parts to see that

∫

sec3 θdθ = sec θ tan θ −
∫

sec θ tan2 θdθ.

In other words,

∫

sec3 θdθ = sec θ tan θ −
∫

sec θ(sec2 θ − 1)dθ.

or

2

∫

sec3 θdθ = sec θ tan θ +

∫

sec θdθ.

It follows that

∫

sec3 θdθ = 1
2 (sec θ tan θ + ln | sec θ + tan θ|) + C

= 1
2

(

x
√

x2 + 1 + ln |
√

x2 + 1 + x|
)

+ C.

The derivative of the proposed answer is

1
2

(

x x√
x2+1

+
√

x2 + 1 +
x√

x2+1
+1

√
x2+1+x

)

= 1
2

(

x x√
x2+1

+
√

x2 + 1 + x+
√

x2+1√
x2+1(

√
x2+1+x)

)

= 1
2

(

x x√
x2+1

+
√

x2 + 1 + 1√
x2+1

)

= 1
2

(

x2+1√
x2+1

+
√

x2 + 1
)

. X

4. Find

∫

ln x dx . Check your answer.

Let u = ln x and dv = dx . It follows that du = dx
x

and v = x . Use integration
by parts to see that the integral is equal to

x lnx −
∫

dx = x lnx − x + C.

The derivative of the proposed answer is

1 + ln x − 1. X
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5. Find

∫

4x3 + 6x2 + x + 2

x4 + x2
dx . Check your answer.

A quick calculation shows that

∫

4x3 + 6x2 + x + 2

x4 + x2
dx =

∫

1

x
+

2

x2
+

3x + 4

x2 + 1
dx

= ln |x| + −2

x
+ 3

2 ln(x2 + 1) + 4 arctanx + C.

The derivative of the proposed answer is

1

x
+

2

x2
+

3x

x2 + 1
+

4

1 + x2

=
(x3 + x) + 2(x2 + 1) + 3x3 + 4x2

x2 + x4

=
4x3 + 6x2 + x + 2

x2 + x4
. X

6. Find lim
x→∞

(

x

x − 4

)x

.

The limit is equal to

lim
x→∞

(

(x − 4) + 4

x − 4

)x

= lim
x→∞

(

1 +
4

x − 4

)x

.

Let t = x − 4 . The limit is equal to

= lim
t→∞

(

1 +
4

t

)t+4

= lim
t→∞

(

1 +
4

t

)t

lim
t→∞

(

1 +
4

t

)4

.

We know that lim
t→∞

(1 + r
t )

t = er . We conclude that the answer is e4 .

7. Find the area between y = x and x + y2 = 2 .

I drew a picture elsewhere. The intersection points are (1, 1) and (−2,−2) . We
partition the y -axis. The area is

∫ 1

−2

[(2 − y2) − y] dy = 2y − y3

3
− y2

2

∣

∣

∣

∣

1

−2

= 2 − 1

3
− 1

2
− (−4 +

8

3
− 2) =

27

6
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8. Consider the sequence {an} with a1 = 10 , and an = 1
2 [an−1 + 3

an−1
] for

n ≥ 2 . Prove that the sequence {an} converges. Find the limit of the
sequence {an} .

Suppose, for the time being, that the sequence converges. Let L = lim
n→∞

an . Take

the limit of both sides of an = 1
2 [an−1 + 3

an−1
] to see that

L = 1
2 [L + 3

L ].

Multiply both sides by 2L to see that 2L2 = L2 +3 ; so, L2 = 3 and L is equal to√
3 or −

√
3 . All of the numbers an are non-negative; so L most be non-negative.

We now know that, if L exists, then L must be
√

3 .
We still have to prove that L exists. I will show that the sequence {an} is a

decreasing sequence of Real numbers which is bounded below by
√

3 . The (dual
of the) Completeness axiom tells us that the sequence {an} has a limit.

I first show that
√

3 ≤ an for all n . We see that 3 ≤ a1 . In general, we hope
to show that √

3 ≤ 1
2 [an−1 + 3

an−1
].

Multiply both sides by the positive number 2an−1 . We hope to show

2
√

3an−1 ≤ a2
n−1 + 3.

We hope to show that
0 ≤ a2

n−1 − 2
√

3an−1 + 3.

The right side factors as (an−1 −
√

3)2 , and this perfect square is non-negative.

Read the calculation from the bottom up to see that
√

3 ≤ an for all n .
Finally, I show that an ≤ an−1 , for all n ≥ 2 . I will show that

1
2
[an−1 + 3

an−1
] ≤ an−1.

Multiply by the positive number 2an−1 . We hope to show that

a2
n−1 + 3 ≤ 2a2

n−1.

We hope to show that
0 ≤ a2

n−1 − 3

We hope to show that

0 ≤ (an−1 +
√

3)(an−1 −
√

3).

Divide by the positive number (an−1 +
√

3) . We hope to show

0 ≤ an−1 −
√

3.

Fortunately, we have already shown that every member of the sequence is at least√
3 . Read the calculation from the bottom to the top to see that an ≤ an−1 .
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9. A conical water tank sits with its base on the ground. The radius of
the base is 10 feet. The height of the tank is 30 feet. The tank is
filled to a depth of 25 feet. How much work is required to pump all
of the water out through a hole in the top of the tank? The density of
water is 62.4 lb/ft 3 . Be sure to give the units for your answer.

I drew a picture elsewhere. Notice that I arranged my axis, so that x = 0 is the
top of the tank. The water starts at x = 5 . The bottom of the water occurs at
x = 30 . For each x between 5 and 30 , we lift a thin layer of water starting at
x -coordinate x . The work to lift this thin layer is the weight of the layer times
the distance this layer must be lifted. The distance is x . (That is the advantage of
the way I set my axis.) The weight of the layer is the volume of the layer times the
density of water. The volume of the layer is the area of the top times the thickness.
The thickness is dx and the area of the top is πr2 , where similar triangles tell us
that r = 1

3x . The work to lift the layer of water at x -coordinate x is

(62.4)π( 1
3
x)2xdx.

The total work is

(62.4)π

9

∫ 30

5

x3dx =
(62.4)π

9

x4

4

∣

∣

∣

∣

30

5

=
(62.4)π

36
[304 − 54] foot-pounds.

10. Consider the region in the first quadrant which is bounded by y = x2 ,
the x -axis, and x = 1 . Revolve this region about the line x = 5 .
What is the volume of the resulting solid?

I have drawn a picture on a different page. I partition the x -axis, and draw
rectangles which are perpendicular to the x -axis. Spin each rectangle and get a
cylindrical shell of volume 2πrht , where t = dx , r = 5 − x , and h = x2 . The
volume is

2π

∫ 1

0

(5−x)x2 dx = 2π

∫ 1

0

(5x2−x3) dx = 2π

[

5x3

3
− x4

4

]1

0

= 2π

(

5

3
− 1

4

)

=
17π

6
.

11. Find the length of 24xy = y4 + 48 from y = 2 to y = 4 .

The equation is x = y3

24
+ 2

y
. The length is

∫ 4

2

√

1 +

(

dx

dy

)2

dy =

∫ 4

2

√

1 +

(

y2

8
− 2

y2

)2

dy =

∫ 4

2

√

1 +
y4

64
− 1

2
+

4

y4
dy

=

∫ 4

2

√

y4

64
+

1

2
+

4

y4
dy =

∫ 4

2

√

(

y2

8
+

2

y2

)2

dy =

∫ 4

2

(

y2

8
+

2

y2

)

dy =
y3

24
− 2

y

∣

∣

∣

∣

4

2

= 43

24 − 1
2 − ( 23

24 − 1) = 17
6



6

12. Let f(x) =
∞
∑

k=1

(x − 2)k

5kk
. Find all real numbers x for which f(x)

converges. Justify your answer.

We use the ratio test. Let

ρ = lim
k→∞

|ak+1|
|ak|

= lim
k→∞

|x − 2|k+1

5k+1(k + 1)

5kk

|x − 2|k = lim
k→∞

|x − 2|
5

k

k + 1
=

|x − 2|
5

.

If ρ < 1 , then the series converges. If 1 < ρ , then the series diverges. We see that
ρ < 1 precisely when −3 < x < 7 . We also see that 1 < ρ precisely when x < −3
or 7 < x . We need only worry about x = −3 and x = 7 .

We see that

f(7) =

∞
∑

k=1

(7 − 2)k

5kk
=

∞
∑

k=1

1

k
,

which is the harmonic series and diverges. We see that

f(−3) =

∞
∑

k=1

(−5)k

5kk
=

∞
∑

k=1

(−1)k

k
,

which is minus the alternating harmonic series and converges. We conclude that

f(x) converges for −3 ≤ x < 7 and f(x) diverges for all other x.

13. Find lim
x→0

ex2 − 1 − x2 − x4

2 − x6

3!

x8
. Justify your answer.

We know that

ex = 1 + x +
x2

2
+

x3

3!
+

x4

4!
+ . . .

It follows that

ex2

= 1 + x2 +
x4

2
+

x6

3!
+

x8

4!
+ . . . ;

and therefore,

lim
x→0

ex2 − 1 − x2 − x4

2
− x6

3!

x8

= lim
x→0

(

1 + x2 + x4

2 + x6

3! + x8

4! + . . .
)

− 1 − x2 − x4

2 − x6

3!

x8

= lim
x→0

(

x8

4!
+ . . .

)

x8

= lim
x→0

x8
(

1
4! + x2

5! + x4

6! + . . .
)

x8

= lim
x→0

(

1

4!
+

x2

5!
+

x4

6!
+ . . .

)

=
1

24
.
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14. Does
∞
∑

k=1

√
k

k3 + 1
converge? Justify your answer.

The series
∞
∑

k=1

1
k5/2 is the p -series with p = 5

2
> 1 ; so

∞
∑

k=1

1
k5/2 converges. I apply

the limit comparison test to the two series considered so far. I see that

lim
k→∞

ak

bk
= lim

k→∞

√
k

k3+1
1

k5/2

= lim
k→∞

k5/2
√

k

k3 + 1
= lim

k→∞

k3

k3 + 1
= lim

k→∞

1

1 + 1
k3

= 1.

This limit is a number, not 0 , not ∞ . The Limit Comparison Test tells us that

both series converge or both series diverge. We have seen that
∞
∑

k=1

1
k5/2 converges.

We conclude that
∞
∑

k=1

√
k

k3 + 1
converges.

15. Does

∞
∑

k=1

5k + k

k! + 3
converge? Justify your answer.

Notice that
5k + k

k! + 3
<

5k + 5k

k!
=

2 · 5k

k!

because the fraction on the right has a larger numerator and a smaller denominator.

The series
∞
∑

k=1

2·5k

k! converges by the ratio test:

lim
k→∞

ak+1

ak
= lim

k→∞

2·5k+1

(k+1)!

2·5k

k!

= lim
k→∞

2 · 5k+1

(k + 1)!

k!

2 · 5k
= lim

k→∞

5

k + 1
= 0 < 1.

Both series
∞
∑

k=1

5k+k
k!+3

and
∞
∑

k=1

2·5k

k!
are positive series. The terms of

∞
∑

k=1

5k+k
k!+3

are

smaller than the terms of
∞
∑

k=1

2·5k

k! . The series
∞
∑

k=1

2·5k

k! converges. We apply the

Comparison test to conclude that the series
∞
∑

k=1

5k+k
k!+3

also converges.

16. What is the exact sum of the series

∞
∑

k=0

k

3k
? Justify your answer.
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We know that
∞
∑

k=0

xk = 1
1−x for all real numbers x with −1 < x < 1 . Take the

derivative of both sides to see that

∞
∑

k=0

kxk−1 =
1

(1 − x)2

for all real numbers x with −1 < x < 1 . Multiply both sides by x to see

∞
∑

k=0

kxk =
x

(1 − x)2

for all real numbers x with −1 < x < 1 . Plug in x = 1
3 to conclude that

∞
∑

k=0

k

3k
=

1
3

(1 − 1
3
)2

.

17. Approximate

∞
∑

k=1

1

k4
with an error at most 1

1000 . Justify your answer.

We see that
∣

∣

∣

∣

∣

∞
∑

k=1

1

k4
−

n
∑

k=1

1

k4

∣

∣

∣

∣

∣

=

∞
∑

k=n+1

1

k4
.

I drew some boxes elsewhere to help approximate the right most sum. The sum is
the area inside the boxes, which is less than the area under the curve, which equals

∫ ∞

n

1

x4
dx = lim

b→∞

1

−3x3

∣

∣

∣

∣

b

n

= lim
b→∞

1

−3b3
+

1

3n3
=

1

3n3
.

We have shown that
∣

∣

∣

∣

∣

∞
∑

k=1

1

k4
−

n
∑

k=1

1

k4

∣

∣

∣

∣

∣

≤ 1

3n3

Notice that when n = 7 (or higher) 1
3n3 < 1

1000 . We conclude that

7
∑

k=1

1

k4

approximates

∞
∑

k=1

1

k4
with an error at most 1

1000 .
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18. Approximate

∫ 1
10

0

sin(x2) dx with an error at most 1
1000 . Justify your

answer.

The given integral is equal to

∫ 1
10

0

x2 − x6

3!
+

x10

5!
− x14

7!
+ . . . dx

=

(

x3

3
− x7

7 · 3!
+

x11

11 · 5!
− x15

15 · 7!
+ . . .

)
∣

∣

∣

∣

1
10

0

=
1

3 · 103
− 1

7 · 3! · 107
+

1

11 · 5! · 1011
− 1

15 · 7! · 1015
+ . . .

We have found a series which converges to

∫ 1
10

0

sin(x2) dx . We may apply the

alternating series test to the series. The series alternates. The (absolute value of
the) terms decrease. The terms go to zero. The distance between the sum of the
entire series and some particular partial sum is less than the next term in the series.
We see that 1

7·3!·107 < 1
1000 . We conclude that 1

3·103 approximates the value of
∫ 1

10

0

sin(x2) dx with an error at most 1
1000 .

19. Find the Taylor polynomial P3(x) of order 3 for the function f(x) =
ln x about a = 1 .

We see that

f(x) = ln x, f ′(x) =
1

x
, f ′′(x) =

−1

x2
, f ′′′(x) =

2

x3
, f (4)(x) =

−6

x4
,

f(1) = 0, f ′(1) = 1, f ′′(1) = −1, and f ′′′(x) = 2.

We know that P3(x) = f(1) + f ′(1)(x− 1) + f ′′(1)
2 (x− 1)2 + f ′′′(1)

3! (x− 1)3 . Thus,

P3(x) = (x − 1) − (x − 1)2

2
+

(x − 1)3

3
.

20. Keep the notation of problem 19. Find an upper bound for the error
that is introduced if P3(x) is used to approximate f(x) when |x−1| < .1

We know that

|f(x) − P3(x)| = |R3(x)| =

∣

∣

∣

∣

f (4)(c)(x − 1)4

4!

∣

∣

∣

∣

=

∣

∣

∣

∣

−6(x − 1)4

c44!

∣

∣

∣

∣

=
|x − 1|4
|c|44 ,
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for some c between x and 1 . We are told that |x − 1| < .1 . So

|R3(x)| ≤ 1

|c|44(10)4
.

We know that .9 < x < 1.1 ; so .9 < c . It follows that 1
c

< 10
9

, and

|R3(x)| ≤ 104

944(10)4
=

1

944
.

We conclude that: if P3(x) is used to approximate f(x) when |x − 1| < .1 , then
the error that is introduced is less than 1

944 .


