Math 142 Final Exam Fall 2004 Solutions

PRINT Your Name: \qquad
There are 20 problems on 10 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS! CHECK your answer whenever possible.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your grade from VIP.
I will post the solutions on my website when the exam is finished.

1. Find $\frac{d}{d x}\left(x e^{x^{2}}\right)$.
$x\left(2 x e^{x^{2}}\right)+e^{x^{2}}$.
2. Find $\int x e^{x^{2}} d x$. Check your answer.

Let $u=x^{2}$. Then $d u=2 x d x$; so the integral is $\int \frac{1}{2} e^{u} d u=\frac{1}{2} e^{u}+C=\frac{e^{x^{2}}}{2}+C$.
3. Simplify $\sin \left(2 \arccos \left(\frac{3}{4}\right)\right)$.

The expression is

$$
2 \sin \left(\arccos \left(\frac{3}{4}\right)\right) \cos \left(\arccos \left(\frac{3}{4}\right)\right)=2 \frac{\sqrt{7}}{4} \frac{3}{4} .
$$

Draw a right triangle with the adjacent equal to 3 , hypotenuse equal to 4 , and opposite equal to $\sqrt{7}$ to see that $\sin \left(\arccos \left(\frac{3}{4}\right)\right)=\frac{\sqrt{7}}{4}$.
4. Find $\int \sin ^{4} x \cos ^{3} x d x$. Check your answer.

Save one $\cos x$ turn the other two $\cos x$'s into $\sin x$'s. Then let $u=\sin x$. It follows that $d u=\cos x$. The integral is

$$
\begin{aligned}
\int \sin ^{4} x\left(1-\sin ^{2} x\right) \cos x d x & =\int u^{4}\left(1-u^{2}\right) d u=\int\left(u^{4}-u^{6}\right) d u=\frac{u^{5}}{5}-\frac{u^{7}}{7}+C \\
& =\frac{\sin ^{5} x}{5}-\frac{\sin ^{7} x}{7}+C .
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\sin ^{4} x \cos x-\sin ^{6} x \cos x=\sin ^{4} x \cos x\left(1-\sin ^{2} x\right)=\sin ^{4} x \cos x \cos ^{2} x
$$

5. Find $\int \sin ^{2} x d x$.

The integral is

$$
\frac{1}{2} \int 1-\cos 2 x d x=\frac{1}{2}\left(x-\frac{\sin 2 x}{2}\right)+C
$$

6. Find $\int \frac{x}{x^{2}+4} d x$. Check your answer.

Let $u=x^{2}+4$. It follows that $d u=2 x d x$. The integral is equal to

$$
\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln \left(x^{2}+4\right)+C
$$

Check. The derivative of the proposed answer is

$$
\frac{1}{2} \frac{2 x}{x^{2}+4} \cdot \checkmark
$$

7. Find $\int \frac{1}{x^{2}+4} d x$. Check your answer.
$\frac{1}{2} \arctan \left(\frac{x}{2}\right)+C$.
Check. The derivative of the proposed answer is

$$
\frac{1}{2} \frac{\frac{1}{2}}{\left(\frac{x}{2}\right)^{2}+1}=\frac{1}{x^{2}+4}
$$

8. Find $\int \frac{1}{\sqrt{x^{2}+4}} d x$. Check your answer.

Let $x=2 \tan \theta$. It follows that $\sqrt{x^{2}+4}=\sqrt{4 \tan ^{2} \theta+4}=\sqrt{4 \sec ^{2}}=2 \sec \theta$. It also follows that $d x=2 \sec ^{2} \theta d \theta$. Thus, the integral is

$$
\begin{aligned}
& \int \frac{2 \sec ^{2} \theta d \theta}{2 \sec \theta}=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C=\ln \left|\frac{\sqrt{x^{2}+4}}{2}+\frac{x}{2}\right|+C \\
= & \ln \left|\frac{\sqrt{x^{2}+4}+x}{2}\right|+C=\ln \left|\sqrt{x^{2}+4}+x\right|-\ln 2+C=\ln \left|\sqrt{x^{2}+4}+x\right|+K
\end{aligned}
$$

where K is the new constant $-\ln 2+C$.
Check. The derivative of $\ln \left(\sqrt{x^{2}+4}+x\right)$ is

$$
\frac{\frac{2 x}{2 \sqrt{x^{2}+4}}+1}{\sqrt{x^{2}+4}+x}=\frac{x+\sqrt{x^{2}+4}}{\sqrt{x^{2}+4}\left(\sqrt{x^{2}+4}+x\right)}=\frac{1}{\sqrt{x^{2}+4}} . \checkmark
$$

9. Let $f(x)=x \ln x$. What is the domain of $f(x)$? Where is $f(x)$ increasing, decreasing, concave up, and concave down? Find the local maxima, local minima, and points of inflection of $y=f(x)$. Graph $y=f(x)$.

The domain of $f(x)$ is all $x>0$. We see that $\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}$. The top and bottom both go to infinity, so l'hopital's rule tells us that this limit is $\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^{2}} \lim _{x \rightarrow 0^{+}}-x=0$. Thus, $\lim _{x \rightarrow 0^{+}} f(x)=0$.

We see that $f^{\prime}(x)=x \frac{1}{x}+\ln x=1+\ln x$. Observe that $f^{\prime}(x)$ is positive for $x<1 / e$; and $f^{\prime}(x)$ is negative for $0<x<1 / e$. Thus,

$$
\begin{gathered}
f(x) \text { is increasing for } 1 / e<x, \\
f(x) \text { is decreasing for } 0<x<1 / e, \\
\text { and }(1 / e,-1 / e) \text { is a local minimum point on the graph of } y=f(x) .
\end{gathered}
$$

We see that $f^{\prime \prime}(x)=1 / x$, which is always positive. Thus,

$$
f(x) \text { is always concave up, never concave down and has no points of inflection. }
$$

The graph appears on another page.
10. Find $\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1-x^{2}-\frac{x^{4}}{2}-\frac{x^{6}}{6}-\frac{x^{8}}{24}}{x^{10}}$. Justify your answer.

We know that $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Thus,

$$
e^{x^{2}}=\sum_{n=0}^{\infty} \frac{\left(x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}
$$

and

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{e^{x^{2}}-1-x^{2}-\frac{x^{4}}{2}-\frac{x^{6}}{6}-\frac{x^{8}}{24}}{x^{10}}=\lim _{x \rightarrow 0} \frac{\frac{x^{10}}{5!}+\frac{x^{12}}{6!}+\ldots}{x^{10}}=\lim _{x \rightarrow 0} \frac{x^{10}\left[\frac{1}{5!}+\frac{x^{2}}{6!}+\ldots\right]}{x^{10}} \\
=\lim _{x \rightarrow 0} \frac{1}{5!}+\frac{x^{2}}{6!}+\cdots=\frac{1}{5!}
\end{gathered}
$$

11. Find $\int \frac{x d x}{(x-3)^{2}}$. Check your answer.

We multiply both sides of

$$
\frac{x}{(x-3)^{2}}=\frac{A}{x-3}+\frac{B}{(x-3)^{2}}
$$

by $(x-3)^{2}$ to get

$$
x=A(x-3)+B
$$

or

$$
x=A x+B-3 A .
$$

Equate the corresponding coefficients to see that $A=1$ and $B=3$. Check that

$$
\frac{1}{x-3}+\frac{3}{(x-3)^{2}}=\frac{x-3+3}{(x-3)^{2}}=\frac{x}{(x-3)^{2}}
$$

So, the original integral is the same as

$$
\int \frac{1}{x-3}+\frac{3}{(x-3)^{2}} d x=\ln |x-3|-\frac{3}{x-3}+C .
$$

12. Find $\int \ln x d x$. Check your answer.

Let $u=\ln x$ and $d v=d x$. It follows that $d u=\frac{d x}{x}$ and $v=x$. Integration by parts gives

$$
\int u d v=u v-\int v d u=x \ln x-\int x \frac{d x}{x}=x \ln x-x+C .
$$

Check. The derivative of the proposed answer is

$$
x \frac{1}{x}+\ln x-1=\ln x
$$

13. Find $\int_{e}^{\infty} \frac{1}{x(\ln x)^{2}} d x$.

The integral is

$$
\left.\lim _{b \rightarrow \infty} \frac{-1}{\ln x}\right|_{e} ^{b}=\lim _{b \rightarrow \infty} \frac{-1}{\ln b}-\frac{-1}{\ln e}=\frac{1}{\ln e}=1
$$

14. Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=\left(\frac{n-1}{n}\right)^{n}$. Justify your answer.

We know that $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}$. It follows that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\frac{n-1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{-1}{n}\right)^{n}=e^{-1} .
$$

15. What familiar function is equal to

$$
f(x)=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\ldots ?
$$

Justify your answer.

We know that

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots \quad \text { for }-1<x<1
$$

Take the derivative of both sides to see that

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+\ldots \quad \text { for }-1<x<1
$$

16. Does the series $\sum_{n=1}^{\infty} \frac{n+3}{n^{2} \sqrt{n}}$ converge or diverge? Justify your answer.

Compare the given series to the converging p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$. (The new series has $p=3 / 2>1$.) Use the limit comparison test.

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{n+3}{n^{2} \sqrt{n}}}{\frac{1}{n^{3 / 2}}}=\lim _{n \rightarrow \infty} \frac{n+3}{n^{2} \sqrt{n}} n^{3 / 2}=\lim _{n \rightarrow \infty} \frac{n+3}{n}=\lim _{n \rightarrow \infty} 1+\frac{3}{n}=1 .
$$

We see that 1 is a number which is not zero or infinity. It follows that both series converge or both series diverge. We know that $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges. We conclude that $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$ converges.
17. Does the series $\sum_{n=1}^{\infty} \frac{n^{2}}{n!}$ converge or diverge? Justify your answer. Use the ratio test. Let

$$
\begin{aligned}
\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{2}}{(n+1)!}}{\frac{n^{2}}{n!}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+1)!} \frac{n!}{n^{2}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+1)} \frac{1}{n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n}+\frac{1}{n^{2}}=0 .
\end{aligned}
$$

Thus $\rho<1$ and

$$
\sum_{n=1}^{\infty} \frac{n^{2}}{n!} \text { converges. }
$$

18. Find the Taylor polynomial $P_{3}(x)$ for $f(x)=(1+x)^{3 / 2}$ about $a=0$ and bound the error $R_{3}(x)$ if $-.1 \leq x \leq 0$.

We see that

$$
\begin{array}{ll}
f(x)=(1+x)^{3 / 2} & f(0)=1 \\
f^{\prime}(x)=(3 / 2)(1+x)^{1 / 2} & f^{\prime}(0)=3 / 2 \\
f^{\prime \prime}(x)=(3 / 4)(1+x)^{-1 / 2} & f^{\prime \prime}(0)=3 / 4 \\
f^{\prime \prime \prime}(x)=(-3 / 8)(1+x)^{-3 / 2} & f^{\prime \prime \prime}(0)=-3 / 8 \\
f^{(4)}(x)=(9 / 16)(1+x)^{-5 / 2} &
\end{array}
$$

We know that

$$
P_{3}(x)=f(0)+f^{\prime}(0) x+f^{\prime \prime}(0) \frac{x^{2}}{2}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!} .
$$

So,

$$
P_{3}(x)=1+(3 / 2) x+(3 / 4) \frac{x^{2}}{2}+(-3 / 8) \frac{x^{3}}{3!}
$$

The remainder

$$
\left|R_{3}(x)\right|=\left|\frac{f^{(4)}(c) x^{4}}{4!}\right|=\left|\frac{9 x^{4}}{16(1+c)^{5 / 2} 4!}\right|
$$

for some c with $-.1 \leq c \leq 0$. We know that $.9 \leq 1+c$; so, $\frac{1}{1+c} \leq \frac{1}{.9}$. We also know that $|x|<.1$. Thus,

$$
\left|R_{3}(x)\right| \leq\left|\frac{9(.1)^{4}}{16(.9)^{5 / 2} 4!}\right|
$$

19. Use the Parabolic Rule to approximate the amount of water required to fill a pool shaped like the picture below to a depth of 6 feet. (See a different page.) All dimensions are in feet. Recall that Parabolic Rule says that if n is even, then $\int_{a}^{b} f(x) d x$ is equal to
$\frac{h}{3}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right) \cdots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]+E_{n}$,
for $h=\frac{b-a}{n}, x_{i}=a+h i$, and $E_{n}=-\frac{(b-a)^{5}}{180 n^{4}} f^{(4)}(c)$ for some c with $a \leq c \leq b$. (Just record the sum. You are not required to perform any addition or multiplication.)

The Parabolic rule gives that the volume is approximately equal to

$$
6 \cdot \frac{3}{3}[22+4 \cdot 23+2 \cdot 24+4 \cdot 23+2 \cdot 18+4 \cdot 12+2 \cdot 10+4 \cdot 6+0] \text { cubic feet. }
$$

20. Carbon 14, an isotope of carbon, is radioactive and decays at a rate proportional to the amount present. Its half life is 5730 years; that is, it takes 5730 years for a given amount of carbon 14 to decay to one-half its original size. If 10 grams was present originally, how much will be left after 2000 years? (You may leave \ln in your answer.)

Let $A(t)$ be the amount of carbon 14 present at time t, where t is measured in years. Notice that $A(0)=10$ grams and $A(5730)=5$ grams. We are supposed to find $A(2000)$. The fact that carbon 14 decays at a rate proportional to the amount present tells us that $A(t)=A(0) e^{k t}$ for some k. Plug in $t=5730$ to learn that $5=10 e^{k 5730}$. Divide by 10 and take \ln of both sides to see that $\ln (.5)=k 5730$ or $\frac{\ln (.5)}{5730}=k$. Our answer is $A(2000)=10 e^{\frac{2000 \ln (.5)}{5730}}$ grams.

