
PRINT Your Name:
Math 142 Exam 4 Fall 2004 Solutions

There are 10 problems on 5 pages. Each problem is worth 10 points. SHOW your
work. CIRCLE your answer. NO CALCULATORS!

If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office after I have graded it. (I
will send you an e-mail when I am finished with it.) You may pick it up any time
between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 6:00 PM today.

1. What is the limit of the sequence:

sin 1, 2 sin
1
2
, 3 sin

1
3
, 4 sin

1
4
, 5 sin

1
5
, . . .?

Explain your answer.

We compute

lim
n→∞ n sin

1
n

= lim
n→∞

sin 1
n

1
n

.

The top and the bottom both go to zero, so L’hopital’s rule yields that the above
limit is

= lim
n→∞

−n−2 cos 1
n

−n−2
= lim

n→∞ cos
1
n

= cos 0 = 1 .

2. Does the series
∞∑

n=2

3n

4n+1
converge? Explain your answer.

This series converges because it is the geometric series with ratio r = 3
4

and
initila term a = 9

64 . We notice that −1 < r < 1 .

3. Does the series
∞∑

n=2

n

n2 − 1
converge? Explain your answer.

We make a straight comparison with the divergent Harmonic series
∞∑

n=2

1
n . Notice

that n2 − 1 ≤ n2 . Divide both sides by n(n2 − 1) to see that 1
n
≤ 1

n2−1
. We

conclude that the series
∞∑

n=2

n

n2 − 1
also diverges .
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4. Does the series
∞∑

n=2

1
n lnn

converge? Explain your answer.

We apply the integral test. Notice that f(x) is a positive decreasing function for
2 ≤ x . We compute

∫ ∞

2

1
x lnx

dx = lim
b→∞

ln | lnx|
∣∣∣∣
b

2

= lim
b→∞

ln | ln b| − ln ln 2 = +∞.

The integral diverges. Therefore, the series also diverges .

5. Does the series

1 +
1

2
√

2
+

1
3
√

3
+

1
4
√

4
+

1
5
√

5
+ . . .

converge? Explain your answer.

This series is the p -series
∞∑

n=1

1
n3/2

, with p = 3/2 . We see that 1 < p . We

conclude that the series converges .

6. For which values of x does the power series f(x) =
∞∑

n=1

(x − 3)n

n2n

converge? Explain your answer.

Let

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(x−3)n+1

(n+1)2n+1

(x−3)n

n2n

∣∣∣∣∣∣ = lim
n→∞

|x − 3|n+1

(n + 1)2n+1

n2n

|x − 3|n

= lim
n→∞

|x − 3|
2

n

(n + 1)
=

|x − 3|
2

.

We see that ρ < 1 when |x−3|
2 < 1 , or |x − 3| < 2 , which is −2 < x − 3 < 2 ,

or 1 < x < 5 . We also see that 1 < ρ for x < 1 or 5 < x . At x = 5 ,

f(5) =
∞∑

n=1

2n

n2n =
∞∑

n=1

1
n , and this series is the divergent Harmonic series. At

x = 1 , f(1) =
∞∑

n=1

(−2)n

n2n =
∞∑

n=1

(−1)n

n , and this series is minus the convergent

Alternating Harmonic series. We conclude that

f(x) converges for 1 ≤ x < 5 and f(x) diverges for all other x.
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7. Approximate
∫ 1

0

sin(x2) dx with an error of at most 1
104 . Explain your

answer.

We know that

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ . . . .

Replace every x by x2 to get

sin x2 = x2 − x6

3!
+

x10

5!
− x14

7!
+ . . . .

So, ∫ 1

0

sin(x2) dx =
∫ 1

0

x2 − x6

3!
+

x10

5!
− x14

7!
+ . . . dx

=
x3

3
− x7

3!7
+

x11

5!11
− x15

7!15
+ . . .

∣∣∣∣
1

0

=
1
3
− 1

3!7
+

1
5!11

− 1
7!15

+ . . .

Notice that this series is an alternating series which satisfies the hypotheses of the
Alternating Series Test because the terms (in absolute value) are decreasing and
going to zero. Notice also that 7!(15) = 120(6)(7)(15) > 104 , so 1

7!15
< 1

104 and
the Alternating series test assures us that

∫ 1

0
sin(x2) dx may be approximated by

1
3
− 1

3!7
+

1
5!11

with an error of no more than 1
104 .

8. What familiar series is equal to

x2 +
x4

2!
+

x6

3!
+

x8

4!
+

x10

5!
+ . . .?

Explain your answer.

We know that

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ . . . .

It follows that

ex2
= 1 + x2 +

x4

2!
+

x6

3!
+

x8

4!
+

x10

5!
+ . . . ,

and

ex2 − 1 = x2 +
x4

2!
+

x6

3!
+

x8

4!
+

x10

5!
+ . . . .
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9. Find the Taylor Polynomial P3(x) for the function f(x) =
√

x about
a = 1 .

We know that

P3(x) = f(1) + f ′(1)(x − 1) +
f ′′(1)

2
(x − 1)2 +

f ′′′(1)
3!

(x − 1)3.

We compute that

f(x) =
√

x, f ′(x) =
1

2
√

x
, f ′′(x) =

−1
4x3/2

, f ′′′(x) =
3

8x5/2
;

and therefore,

f(1) = 1, f ′(1) =
1
2
, f ′′(1) =

−1
4

, f ′′′(1) =
3
8
.

We conclude that

P3(x) = 1 +
(x − 1)

2
− 1

8
(x − 1)2 +

3
3!8

(x − 1)3.

10. Give an upper bound for the difference between
10∑

n=1

1
n4 and

∞∑
n=1

1
n4 . I

expect your upper bound to be relatively small and correct. Be sure
to explain what you are doing and why you are allowed to do it.

The function f(x) = 1
x4 is positive and decreasing; so, we may use the enclosed

picture to see that the area under the curve is greater than or equal to the area
inside the boxes:

∣∣∣∣∣
∞∑

n=1

1
n4

−
10∑

n=1

1
n4

∣∣∣∣∣ =
∞∑

n=11

1
n4

= area inside the boxes ≤ area under the curve

=
∫ ∞

10

1
x4

dx = lim
b→∞

−1
3x3

∣∣∣∣
b

10

= lim
b→∞

(−1
3b3

+
1

3(10)3

)
=

1
3(10)3

.

We conclude that
∞∑

n=1

1
n4 may be approximated by

10∑
n=1

1
n4 with an error of at

most
1

3000
.


