Math 142, Exam 3, Spring 2016
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.
No Calculators or Cell phones.

1. Find $\int \frac{x^{2}-6 x+12}{(x-2)^{3}} d x$. Please make sure that your answer is correct.

We apply the technique of partial fractions and look for numbers A, B, and C with

$$
\frac{x^{2}-6 x+12}{(x-2)^{3}}=\frac{A}{x-2}+\frac{B}{(x-2)^{2}}+\frac{C}{(x-2)^{3}} .
$$

Multiply both sides by $(x-2)^{3}$ to see that

$$
x^{2}-6 x+12=A(x-2)^{2}+B(x-2)+C .
$$

Equate the corresponding coefficients:
$x^{2}-6 x+12=A\left(x^{2}-4 x+4\right)+B(x-2)+C=A x^{2}+(-4 A+B) x+4 A-2 B+C$.
So

$$
1=A, \quad-6=-4 A+B, \quad 12=4 A-2 B+C .
$$

Thus, $A=1, B=-2$, and $C=4$. We check this much:

$$
\frac{1}{x-2}+\frac{-2}{(x-2)^{2}}+\frac{4}{(x-2)^{3}}=\frac{\left(x^{2}-4 x+4\right)-2(x-2)+4}{(x-2)^{3}}=\frac{x^{2}-6 x+12}{(x-2)^{3}},
$$

as expected. Now we do the integral

$$
\begin{gathered}
\int \frac{x^{2}-6 x+12}{(x-2)^{3}} d x=\int\left(\frac{1}{x-2}+\frac{-2}{(x-2)^{2}}+\frac{4}{(x-2)^{3}}\right) d x \\
=\ln |x-2|+\frac{2}{x-2}-\frac{2}{(x-2)^{2}}+C
\end{gathered}
$$

2. Find $\int_{-4}^{7} \frac{1}{(x-5)^{2}} d x$.

There is a pretty picture of the area that this integral represents elsewhere in the solution set. The function $\frac{1}{(x-5)^{2}}$ misbehaves at $x=5$. We have to treat $x=5$ carefully.

$$
\begin{gathered}
\int_{-4}^{7} \frac{1}{(x-5)^{2}} d x=\lim _{b \rightarrow 5^{-}} \int_{-4}^{b} \frac{1}{(x-5)^{2}} d x+\lim _{a \rightarrow 5^{+}} \int_{a}^{7} \frac{1}{(x-5)^{2}} d x \\
=\left.\lim _{b \rightarrow 5^{-}} \frac{-1}{(x-5)}\right|_{-4} ^{b}+\left.\lim _{a \rightarrow 5^{+}} \frac{-1}{(x-5)}\right|_{a} ^{7} \\
=\lim _{b \rightarrow 5^{-}} \frac{-1}{(b-5)}-\frac{-1}{(-4-5)}+\frac{-1}{(7-5)}-\lim _{a \rightarrow 5^{+}} \frac{-1}{(a-5)}=+\infty-\frac{1}{9}-\frac{1}{2}+\infty .
\end{gathered}
$$

The integral diverges to $+\infty$.

3. Approximate $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$ with an error at most $\frac{1}{100}$. Please explain what you are doing and why.
The error that is introduced when $\sum_{k=1}^{\infty} \frac{1}{k^{3}}$ is approximated by $\sum_{k=1}^{N} \frac{1}{k^{3}}$ is

$$
\left|\sum_{k=1}^{\infty} \frac{1}{k^{3}}-\sum_{k=1}^{N} \frac{1}{k^{3}}\right|=\sum_{k=N+1}^{\infty} \frac{1}{k^{3}} .
$$

Look at the picture that appears elsewhere in this solution set to see that

$$
\sum_{k=N+1}^{\infty} \frac{1}{k^{3}} \leq \int_{N}^{\infty} \frac{1}{x^{3}}=\lim _{b \rightarrow \infty}-\left.\frac{1}{2 x^{2}}\right|_{N} ^{b}=\lim _{b \rightarrow \infty}-\frac{1}{2 b^{2}}+\frac{1}{2 N^{2}}=\frac{1}{2 N^{2}}
$$

We make $\frac{1}{2 N^{2}} \leq \frac{1}{100}$. We make $50 \leq N^{2}$. This occurs when $8 \leq N$. We conclude that

$$
\sum_{k=1}^{8} \frac{1}{k^{3}} \text { approximates } \sum_{k=1}^{\infty} \frac{1}{k^{3}} \text { with an error at most } 1 / 100
$$

4. Find the Taylor polynomial $P_{3}(x)$ for $f(x)=\ln (x)$ centered about $a=1$.
We see that

$$
\begin{array}{cc}
f(x)=\ln (x) & f(1)=0 \\
f^{\prime}(x)=\frac{1}{x} & f^{\prime}(1)=1 \\
f^{\prime \prime}(x)=-\frac{1}{x^{2}} & f^{\prime \prime}(1)=-1 \\
f^{\prime \prime}(x)=2 \frac{1}{x^{3}} & f^{\prime \prime \prime}(1)=2
\end{array}
$$

The Taylor polynomial $P_{3}(x)$ is equal to

$$
P_{3}(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2}+f^{\prime \prime \prime}(a) \frac{(x-a)^{3}}{3!} ;
$$

hence in our problem

$$
P_{3}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{2(x-1)^{3}}{3!}
$$

Of course, this is the same as $P_{3}(x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}$ and this is not shocking because we saw in class that

$$
\ln (x)=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\ldots \quad \text { for } 0<x<2
$$

5. Where does the power series $f(x)=\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n 2^{n}}$ converge? Explain carefully. Be sure to account for all real numbers x.
We use the ratio test. Let

$$
\begin{gathered}
\rho=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \frac{\frac{|x-5|^{n+1}}{(n+1)^{n+1}}}{\frac{|x-5|^{n}}{n 2^{n}}}=\lim _{n \rightarrow \infty} \frac{|x-5|^{n+1}}{(n+1) 2^{n+1}} \frac{n 2^{n}}{|x-5|^{n}}=\lim _{n \rightarrow \infty} \frac{n|x-5|}{(n+1) 2} \\
=\lim _{n \rightarrow \infty} \frac{|x-5|}{\left(1+\frac{1}{n}\right) 2}=\frac{|x-5|}{2}
\end{gathered}
$$

If $\frac{|x-5|}{2}<1$, then $f(x)$ converges. If $1<\frac{|x-5|}{2}$, then $f(x)$ diverges. We will need to use another test when $\frac{|x-5|}{2}=1$.

We see that $\frac{|x-5|}{2}<1$ is the same as $|x-5|<2$, which is the same as $-2<x-5<2$, which is the same as $3<x<7$.

We see that $1<\frac{|x-5|}{2}$ is the same as $2<|x-5|$, which is the same as $x-5<-2$ or $2<x-5$, which is the same as $x<3$ or $7<x$.

When $x=7, f(7)=\sum_{n=1}^{\infty} \frac{2^{n}}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{1}{n}$, and this is the harmonic series which diverges.

When $x=3, f(3)=\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n 2^{n}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$, and this is (minus) the alternating harmonic series which converges.
We conclude that $f(x)$ converges for $3 \leq x<7$ and $f(x)$ diverges everywhere else.

