Math 142, Exam 3, Solutions, Fall 2015

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer.
No Calculators or Cell phones.

1. Find $\int \frac{-x^{2}+6 x-3}{(x-1)^{3}} d x$. Please check your answer.

We use the method of partial fractions and look for integers A, B, and C with

$$
\frac{-x^{2}+6 x-3}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}}
$$

Multiply both sides by $(x-1)^{3}$ to obtain

$$
\begin{gathered}
-x^{2}+6 x-3=A(x-1)^{2}+B(x-1)+C \\
-x^{2}+6 x-3=A x^{2}-2 A x+A+B x-B+C \\
-x^{2}+6 x-3=A x^{2}+(-2 A+B) x+(A-B+C) .
\end{gathered}
$$

Equate the corresponding coefficients to see $-1=A, 6=-2 A+B$, and $-3=A-B+C$. Thus, $A=-1,6=2+B($ so, $B=4)$ and $-3=-1-4+C$ (so, $2=C$). At this point we seem to have shown that

$$
\frac{-x^{2}+6 x-3}{(x-1)^{3}}=\frac{-1}{x-1}+\frac{4}{(x-1)^{2}}+\frac{2}{(x-1)^{3}}
$$

We make sure this is correct before continuing. The right side is

$$
\frac{-1}{x-1}+\frac{4}{(x-1)^{2}}+\frac{2}{(x-1)^{3}}=\frac{-\left(x^{2}-2 x+1\right)+4(x-1)+2}{(x-1)^{3}}=\frac{-x^{2}+6 x-3}{(x-1)^{3}},
$$

which is the left side. Now the integral is easy:

$$
\begin{gathered}
\int \frac{-x^{2}+6 x-3}{(x-1)^{3}} d x=\int\left(\frac{-1}{x-1}+\frac{4}{(x-1)^{2}}+\frac{2}{(x-1)^{3}}\right) d x \\
=-\ln |x-1|-\frac{4}{x-1}-\frac{1}{(x-1)^{2}}+C .
\end{gathered}
$$

2. Find $\int_{1}^{7} \frac{d x}{(x-3)^{2}}$. Please draw a meaningful picture.

Please look at the picture on the other page. The picture shows us that the answer is either some positive number or $+\infty$. We compute

$$
\begin{gathered}
\int_{1}^{7} \frac{d x}{(x-3)^{2}}=\lim _{a \rightarrow 3^{-}} \int_{1}^{a} \frac{d x}{(x-3)^{2}}+\lim _{b \rightarrow 3^{+}} \int_{b}^{7} \frac{d x}{(x-3)^{2}} \\
=\left.\lim _{a \rightarrow 3^{-}} \frac{-1}{x-3}\right|_{1} ^{a}+\left.\lim _{b \rightarrow 3^{+}} \frac{-1}{x-3}\right|_{b} ^{7}=\lim _{a \rightarrow 3^{-}}\left(\frac{-1}{a-3}-\frac{-1}{1-3}\right)+\lim _{b \rightarrow 3^{+}}\left(\frac{-1}{7-3}-\frac{-1}{b-3}\right) \\
=+\infty-\frac{1}{2}-\frac{1}{4}+\infty=+\infty .
\end{gathered}
$$

The integral diverges to $+\infty$.
3. Find the volume of the solid which is obtained by revolving the region bounded by $x=y^{2}$ and $y+x=2$ about the line $y=-5$. Please draw a meaningful picture. It is not necessary for you to do the integral.

Please look at the picture on the other page. The two curves intersect when $y+y^{2}=2$; so $y^{2}+y-2=0$, or $(y-1)(y+2)=0$. The points of intersection are $(1,1)$ and $(4,-2)$. Chop the y-axis from $y=-2$ to $y=1$. Rotate the rectangle with y-coordinate y. Obtain a shell of volume $2 \pi r h t$, where $t=d y, r=y+5$, and $h=2-y-y^{2}$. The volume of the shell is

$$
2 \pi r h t=2 \pi(y+5)\left(2-y-y^{2}\right) d y
$$

The volume of the solid is

$$
2 \pi \int_{-2}^{1}(y+5)\left(2-y-y^{2}\right) d y
$$

4. What is the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=\left(\frac{n-3}{n}\right)^{4 n}$. Please explain your answer.

Maybe you know that $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}$. If so, you could say:

$$
\lim _{n \rightarrow \infty} a_{n}=\left(\lim _{n \rightarrow \infty}\left(1+\frac{-3}{n}\right)^{n}\right)^{4}=\left(e^{-3}\right)^{4}=e^{-12}
$$

Otherwise,

$$
\lim _{n \rightarrow \infty} \ln a_{n}=\lim _{n \rightarrow \infty} \ln \left(\frac{n-3}{n}\right)^{4 n}=\lim _{n \rightarrow \infty} 4 n\left(\ln \left(\frac{n-3}{n}\right)\right)=\lim _{n \rightarrow \infty} \frac{4\left(\ln \left(1-\frac{3}{n}\right)\right)}{\frac{1}{n}}
$$

The top and the bottom both go to ∞; we use L'hopital's rule.

$$
\lim _{n \rightarrow \infty} \ln a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{4\left(\frac{3}{n^{2}}\right)}{\left(1-\frac{3}{n}\right)}}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{4(-3)}{\left(1-\frac{3}{n}\right)}=-12
$$

It follows that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} e^{\ln a_{n}}=e^{-12}
$$

$$
\text { The sequence converges to } e^{-12} \text {. }
$$

5. Please express the repeating decimal $d=2.1497979797 \ldots$ as a ratio of two integers. Please explain your answer.

We see that $100 d-d=214.979797 \cdots-2.14979797 \ldots$; so $99 d=212.83$ and

$$
d=\frac{212.83}{99}=\frac{21283}{9900} .
$$

