Math 142, Exam 3 Solutions, Fall 2011

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are $\mathbf{7}$ problems on $\mathbf{2}$ sides.
No Calculators or Cell phones. Write in complete sentences. Explain what you are doing VERY thoroughly.

1. (8 points) Consider the sequence defined by $a_{1}=2$ and $a_{n+1}=\frac{1}{4-a_{n}}$.
(a) Prove that $0<a_{n} \leq 2$ for all positive integers n.
(b) Prove that $a_{n+1} \leq a_{n}$ for all positive integers n.
(c) State the Completeness Axiom and draw a conclusion about the sequence $\left\{a_{n}\right\}$ from the Completeness Axiom.
(d) Find the limit of the sequence $\left\{a_{n}\right\}$.
(a) We use the technique of Mathematical Induction. We see that $a_{1}=2$ and therefore, $0<a_{1} \leq 2$. Assume BY INDUCTION that $0<a_{n-1} \leq 2$ for some FIXED n. Multiply by -1 to see $-2 \leq-a_{n-1}<0$. Add 4 to see $2 \leq 4-a_{n-1}<4$; that is $2 \leq 4-a_{n-1}$ and $4-a_{n-1}<4$. Divide the first inequality by the positive number $2\left(4-a_{n-1}\right)$ to obtain $\frac{1}{4-a_{n-1}} \leq \frac{1}{2}$. Divide the second inequality by the positive number $\left(4-a_{n-1}\right) 4$ to see $\frac{1}{4}<\frac{1}{4-a_{n-1}}$. Put the inequalities back together to see: $\frac{1}{4}<\frac{1}{4-a_{n-1}} \leq \frac{1}{2}$. We have shown that

$$
0<a_{n-1} \leq 2 \Longrightarrow \frac{1}{4}<\frac{1}{4-a_{n-1}} \leq \frac{1}{2}
$$

Obviously, $\frac{1}{4-a_{n-1}}=a_{n}, \quad 0<\frac{1}{4}$ and $\frac{1}{2} \leq 2$; so,

$$
0<a_{n-1} \leq 2 \Longrightarrow 0<a_{n} \leq 2
$$

We saw that $0<a_{1} \leq 2$ for $n=1$. We proved that if $0<a_{n-1} \leq 2$ for some FIXED n, then $0<a_{n} \leq 2$ also holds for that one FIXED n. We apply the Principle of Mathematical Induction to conclude that $0<a_{n} \leq 2$ for ALL positive integers n.
(b) We use the technique of Mathematical Induction. We see that $a_{1}=2$ and $a_{2}=\frac{1}{2}$; so $a_{2} \leq a_{1}$. Assume BY INDUCTION that $a_{n} \leq a_{n-1}$ for some FIXED n. Add $-a_{n}-a_{n-1}$ to both sides to see $-a_{n-1} \leq-a_{n}$. Add 4 to both sides to see: $4-a_{n-1} \leq 4-a_{n}$. Both numbers are positive because part (1) shows
that $a_{n} \leq 2$ for all n. Divide both sides by the positive number $\left(4-a_{n-1}\right)\left(4-a_{n}\right)$ to obtain $\frac{1}{4-a_{n}} \leq \frac{1}{4-a_{n-1}}$ and this is $a_{n+1} \leq a_{n}$. Thus

$$
a_{n} \leq a_{n-1} \Longrightarrow a_{n+1} \leq a_{n}
$$

We saw that $a_{n+1} \leq a_{n}$ for $n=1$. We proved that if $a_{n} \leq a_{n-1}$ for some FIXED n, then $a_{n+1} \leq a_{n}$ also holds for that one FIXED n. We apply the Principle of Mathematical Induction to conclude that $a_{n+1} \leq a_{n}$ for ALL positive integers n.
(c) The completeness axiom says that every decreasing bounded sequence of real numbers has a limit. We showed in (1) and (2) that $\left\{a_{n}\right\}$ is an decreasing bounded sequence of real numbers. We conclude that $\lim _{n \rightarrow \infty} a_{n}$ exists. Let $L=\lim _{n \rightarrow \infty} a_{n}$.
(d) Take $\lim _{n \rightarrow \infty}$ of both sides of $a_{n+1}=\frac{1}{4-a_{n}}$ to conclude that

$$
\lim _{n \rightarrow \infty} a_{n+1}=\frac{1}{4-\lim _{n \rightarrow \infty} a_{n}}
$$

that is, $L=\frac{1}{4-L}$; so $L(4-L)=1$ or $-L^{2}+4 L=1$. We use the quadratic formula to solve $0=L^{2}-4 L+1$. We obtain $L=\frac{4 \pm \sqrt{16-4}}{2}=\frac{4 \pm 2 \sqrt{3}}{2}=2 \pm \sqrt{3}$. We know that L can not be more than 2 because every term in the sequence is less than or equal to 2 . So $L \neq 2+\sqrt{3}$ and hence L does equal $2-\sqrt{3}$.
2. (7 points) Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=$ $\left(\frac{n-3}{n}\right)^{2 n}$.

We learned in class that $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}$. Thus,

$$
\lim _{n \rightarrow \infty}=\lim _{n \rightarrow \infty}\left(\frac{n-3}{n}\right)^{2 n}=\left(\lim _{n \rightarrow \infty}\left(1+\frac{-3}{n}\right)^{n}\right)^{2}=\left(e^{-3}\right)^{2}=e^{-6} .
$$

3. (7 points) Consider the series $\sum_{k=3}^{\infty} 6\left(\frac{1}{3}\right)^{k}$. Does the series converge? Find the sum of the series if possible. Explain what you are doing in great detail.
This series is the geometric series with initial term $a=6\left(\frac{1}{3}\right)^{3}$ and ratio $r=\frac{1}{3}$. We know that if $|r|<1$, then the geometric series with initial term a and ratio r converges to

$$
\frac{a}{1-r}=\frac{6\left(\frac{1}{3}\right)^{3}}{1-\frac{1}{3}} .
$$

4. (7 points) Consider the series $\sum_{k=2}^{\infty}\left(\frac{1}{k}-\frac{1}{k+2}\right)$. For each integer n, with $2 \leq n$, let $s_{n}=\sum_{k=2}^{n}\left(\frac{1}{k}-\frac{1}{k+2}\right)$
(a) Write down s_{5}. Be sure to cancel everything that cancels.
(b) Find a closed formula for s_{n}. Recall that a closed formula does not have any summation signs or any dots.
(c) Find $\lim _{n \rightarrow \infty} s_{n}$.
(d) Does the series $\sum_{k=2}^{\infty}\left(\frac{1}{k}-\frac{1}{k+2}\right)$ converge?
(e) Find the sum of the series $\sum_{k=2}^{\infty}\left(\frac{1}{k}-\frac{1}{k+2}\right)$, if possible.
(a)

$$
\begin{aligned}
s_{5}=\sum_{k=2}^{5}\left(\frac{1}{k}-\frac{1}{k+2}\right)= & \left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{7}\right) \\
& =\frac{1}{2}+\frac{1}{3}-\frac{1}{6}-\frac{1}{7} .
\end{aligned}
$$

(b)

$$
\begin{gathered}
s_{n}=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n+1}\right)+\left(\frac{1}{n}-\frac{1}{n+2}\right) \\
=\frac{1}{2}+\frac{1}{3}-\frac{1}{n+1}-\frac{1}{n+2}
\end{gathered}
$$

(c)

$$
\lim _{n} s_{n}=\lim _{n} \frac{1}{2}+\frac{1}{3}-\frac{1}{n+1}-\frac{1}{n+2}=\frac{1}{2}+\frac{1}{3}
$$

(d) and (e) Yes the series $\sum_{k=2}^{\infty}\left(\frac{1}{k}-\frac{1}{k+2}\right)$ converges and the sum is $\frac{1}{2}+\frac{1}{3}$.
5. (7 points) Estimate $\sum_{k=1}^{\infty} \frac{1}{k^{5}}$ with an error at most $\frac{1}{1000}$.

We estimate $\sum_{k=1}^{\infty} \frac{1}{k^{5}}$ by $\sum_{k=1}^{N} \frac{1}{k^{5}}$ for some integer N which we now determine. The distance between $\sum_{k=1}^{\infty} \frac{1}{k^{5}}$ and $\sum_{k=1}^{N} \frac{1}{k^{5}}$ is

$$
\sum_{k=N+1}^{\infty} \frac{1}{k^{5}}
$$

Look at the picture, to see that

$$
\begin{gathered}
\sum_{k=N+1}^{\infty} \frac{1}{k^{5}}=\text { the area inside the boxes } \leq \text { the area under the curve }=\int_{N}^{\infty} \frac{1}{x^{5}} d x \\
=\left.\lim _{b \rightarrow \infty} \frac{-1}{4 x^{4}}\right|_{N} ^{b}=\lim _{b \rightarrow \infty}\left(\frac{-1}{4 b^{4}}+\frac{1}{4 N^{4}}\right)=\frac{1}{4 N^{4}} .
\end{gathered}
$$

We want the distance between $\sum_{k=1}^{\infty} \frac{1}{k^{5}}$ and $\sum_{k=1}^{N} \frac{1}{k^{5}}$ to be at most $\frac{1}{1000}$; so we make $\frac{1}{4 N^{4}} \leq \frac{1}{1000}$. We make $\frac{1000}{4} \leq N^{4}$. We make $250 \leq N^{4}$. We make $4 \leq N$. We conclude that $\sum_{k=1}^{4} \frac{1}{k^{5}}$ approximates $\sum_{k=1}^{\infty} \frac{1}{k^{5}}$ with an error at most $1 / 1000$.
6. (7 points) Does the series $\sum_{k=1}^{\infty} \frac{1}{k-\ln k}$ converge? Justify your answer VERY thoroughly.
We compare the given series to the divergent Harmonic series $\sum_{k=1}^{\infty} \frac{1}{k}$. We see that $\frac{1}{k} \leq \frac{1}{k-\ln k}$. Part (b) of the comparison test shows that $\sum_{k=1}^{\infty} \frac{1}{k-\ln k}$ also diverges.
7. (7 points) Does the series $\sum_{k=1}^{\infty} \frac{k}{2 k+3}$ converge? Justify your answer VERY thoroughly.
We see that $\lim _{k \rightarrow \infty} \frac{k}{2 k+3}=\lim _{k \rightarrow \infty} \frac{1}{2+\frac{3}{k}}=\frac{1}{2} \neq 0$. Apply the Individual Term Test For Divergence to conclude that $\sum_{k=1}^{\infty} \frac{k}{2 k+3}$ diverges.

