
Math 142, Exam 3 Solutions, Fall 2011
Write everything on the blank paper provided. You should KEEP this piece of
paper. If possible: return the problems in order (use as much paper as necessary),
use only one side of each piece of paper, and leave 1 square inch in the upper left
hand corner for the staple. If you forget some of these requests, don’t worry about
it – I will still grade your exam.
The exam is worth 50 points. There are 7 problems on 2 sides.
No Calculators or Cell phones. Write in complete sentences. Explain
what you are doing VERY thoroughly.

1. (8 points) Consider the sequence defined by a1 = 2 and an+1 = 1

4−an

.

(a) Prove that 0 < an ≤ 2 for all positive integers n .
(b) Prove that an+1 ≤ an for all positive integers n .
(c) State the Completeness Axiom and draw a conclusion about the

sequence {an} from the Completeness Axiom.
(d) Find the limit of the sequence {an} .

(a) We use the technique of Mathematical Induction. We see that a1 = 2 and
therefore, 0 < a1 ≤ 2 . Assume BY INDUCTION that 0 < an−1 ≤ 2 for
some FIXED n . Multiply by −1 to see −2 ≤ −an−1 < 0 . Add 4 to see
2 ≤ 4 − an−1 < 4 ; that is 2 ≤ 4 − an−1 and 4 − an−1 < 4 . Divide the first
inequality by the positive number 2(4− an−1) to obtain 1

4−an−1

≤ 1

2
. Divide the

second inequality by the positive number (4−an−1)4 to see 1

4
< 1

4−an−1

. Put the

inequalities back together to see: 1

4
< 1

4−an−1

≤ 1

2
. We have shown that

0 < an−1 ≤ 2 =⇒ 1

4
<

1

4− an−1

≤ 1

2
.

Obviously, 1

4−an−1

= an , 0 < 1

4
and 1

2
≤ 2 ; so,

0 < an−1 ≤ 2 =⇒ 0 < an ≤ 2.

We saw that 0 < a1 ≤ 2 for n = 1 . We proved that if 0 < an−1 ≤ 2 for some
FIXED n , then 0 < an ≤ 2 also holds for that one FIXED n . We apply the
Principle of Mathematical Induction to conclude that 0 < an ≤ 2 for ALL positive
integers n .

(b) We use the technique of Mathematical Induction. We see that a1 = 2 and
a2 = 1

2
; so a2 ≤ a1 . Assume BY INDUCTION that an ≤ an−1 for some

FIXED n . Add −an−an−1 to both sides to see −an−1 ≤ −an . Add 4 to both
sides to see: 4−an−1 ≤ 4−an . Both numbers are positive because part (1) shows



2

that an ≤ 2 for all n . Divide both sides by the positive number (4−an−1)(4−an)
to obtain 1

4−an

≤ 1

4−an−1

and this is an+1 ≤ an . Thus

an ≤ an−1 =⇒ an+1 ≤ an.

We saw that an+1 ≤ an for n = 1 . We proved that if an ≤ an−1 for some FIXED
n , then an+1 ≤ an also holds for that one FIXED n . We apply the Principle of
Mathematical Induction to conclude that an+1 ≤ an for ALL positive integers n .

(c) The completeness axiom says that every decreasing bounded sequence of real
numbers has a limit. We showed in (1) and (2) that {an} is an decreasing bounded
sequence of real numbers. We conclude that lim

n→∞
an exists. Let L = lim

n→∞
an .

(d) Take lim
n→∞

of both sides of an+1 = 1

4−an

to conclude that

lim
n→∞

an+1 =
1

4− lim
n→∞

an
;

that is, L = 1

4−L
; so L(4 − L) = 1 or −L2 + 4L = 1 . We use the quadratic

formula to solve 0 = L2 − 4L + 1 . We obtain L = 4±
√
16−4

2
= 4±2

√
3

2
= 2 ±

√
3 .

We know that L can not be more than 2 because every term in the sequence is
less than or equal to 2 . So L 6= 2 +

√
3 and hence L does equal 2−

√
3 .

2. (7 points) Find the limit of the sequence whose nth term is an =
(n−3

n
)2n .

We learned in class that lim
n→∞

(1 + r

n
)n = er . Thus,

lim
n→∞

= lim
n→∞

(

n− 3

n

)2n

=

(

lim
n→∞

(

1 +
−3

n

)n)2

=
(

e−3
)2

= e−6 .

3. (7 points) Consider the series
∞
∑

k=3

6( 1
3
)k . Does the series converge? Find

the sum of the series if possible. Explain what you are doing in great
detail.

This series is the geometric series with initial term a = 6( 1
3
)3 and ratio r = 1

3
.

We know that if |r| < 1 , then the geometric series with initial term a and ratio r
converges to

a

1− r
=

6( 1
3
)3

1− 1

3

.
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4. (7 points) Consider the series
∞
∑

k=2

( 1
k
− 1

k+2
) . For each integer n , with

2 ≤ n , let sn =
n
∑

k=2

( 1
k
− 1

k+2
)

(a) Write down s5 . Be sure to cancel everything that cancels.

(b) Find a closed formula for sn . Recall that a closed formula does
not have any summation signs or any dots.

(c) Find lim
n→∞

sn .

(d) Does the series
∞
∑

k=2

( 1
k
− 1

k+2
) converge?

(e) Find the sum of the series
∞
∑

k=2

( 1
k
− 1

k+2
) , if possible.

(a)

s5 =

5
∑

k=2

(

1

k
− 1

k + 2

)

=

(

1

2
− 1

4

)

+

(

1

3
− 1

5

)

+

(

1

4
− 1

6

)

+

(

1

5
− 1

7

)

=
1

2
+

1

3
− 1

6
− 1

7
.

(b)

sn =

(

1

2
− 1

4

)

+

(

1

3
− 1

5

)

+ · · ·+
(

1

n− 1
− 1

n+ 1

)

+

(

1

n
− 1

n+ 2

)

=
1

2
+

1

3
− 1

n+ 1
− 1

n+ 2
.

(c)

lim
n

sn = lim
n

1

2
+

1

3
− 1

n+ 1
− 1

n+ 2
=

1

2
+

1

3

(d) and (e) Yes the series
∞
∑

k=2

( 1
k
− 1

k+2
) converges and the sum is

1

2
+

1

3
.

5. (7 points) Estimate
∞
∑

k=1

1

k5 with an error at most 1

1000
.
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We estimate
∞
∑

k=1

1

k5 by
N
∑

k=1

1

k5 for some integer N which we now determine. The

distance between
∞
∑

k=1

1

k5 and
N
∑

k=1

1

k5 is

∞
∑

k=N+1

1

k5
.

Look at the picture, to see that

∞
∑

k=N+1

1

k5
= the area inside the boxes ≤ the area under the curve =

∫ ∞

N

1

x5
dx

= lim
b→∞

−1

4x4

∣

∣

∣

∣

b

N

= lim
b→∞

(−1

4b4
+

1

4N4

)

=
1

4N4
.

We want the distance between
∞
∑

k=1

1

k5 and
N
∑

k=1

1

k5 to be at most 1

1000
; so we make

1

4N4 ≤ 1

1000
. We make 1000

4
≤ N4 . We make 250 ≤ N4 . We make 4 ≤ N . We

conclude that
4
∑

k=1

1

k5 approximates
∞
∑

k=1

1

k5 with an error at most 1/1000 .

6. (7 points) Does the series
∞
∑

k=1

1

k−ln k
converge? Justify your answer

VERY thoroughly.

We compare the given series to the divergent Harmonic series
∞
∑

k=1

1

k
. We see that

1

k
≤ 1

k−ln k
. Part (b) of the comparison test shows that

∞
∑

k=1

1

k−ln k
also diverges.

7. (7 points) Does the series
∞
∑

k=1

k

2k+3
converge? Justify your answer

VERY thoroughly.

We see that lim
k→∞

k

2k+3
= lim

k→∞
1

2+ 3

k

= 1

2
6= 0. Apply the Individual Term Test For

Divergence to conclude that
∞
∑

k=1

k

2k+3
diverges.


