Math 142, Exam 3, Fall 2016

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer.

No Calculators or Cell phones.

(1) (9 points) Find
$$\int \frac{1}{\sqrt{x^2+1}} dx$$
. Please check your answer.

Let $x = \tan \theta$. Compute that

$$\sqrt{x^2+1} = \sqrt{\tan^2\theta + 1} = \sqrt{\sec^2\theta} = \sec\theta,$$

and that $dx = \sec^2 \theta d\theta$. The original integral is equal to

$$\int \frac{\sec^2 \theta d\theta}{\sec \theta} = \int \sec \theta d\theta = \ln |\sec \theta + \tan \theta| + C = \boxed{\ln |\sqrt{x^2 + 1} + x| + C}$$

Check. We see that

$$\frac{d}{dx}(\ln(\sqrt{x^2+1}+x)) = \frac{\frac{2x}{2\sqrt{x^2+1}}+1}{\sqrt{x^2+1}+x} = \frac{x+\sqrt{x^2+1}}{\sqrt{x^2+1}(\sqrt{x^2+1}+x)} = \frac{1}{\sqrt{x^2+1}}.$$

(2) (9 points) Find $\int_0^4 \frac{1}{(x-3)^2} dx$.

The function $f(x) = \frac{1}{(x-3)^2}$ becomes infinite at 3 which is between 0 and 4; so we will integrate from 0 to a little short of 3 and from a little more than 3 until 4. Once we have completed the above integrals, we will take two limits. We drew a picture on the picture page. The original problem is equal to

$$\lim_{b \to 3^{-}} \int_{0}^{b} \frac{1}{(x-3)^{2}} dx + \lim_{a \to 3^{+}} \int_{a}^{4} \frac{1}{(x-3)^{2}} dx = \lim_{b \to 3^{-}} \frac{-1}{(x-3)} \Big|_{0}^{b} + \lim_{a \to 3^{+}} \frac{-1}{(x-3)} \Big|_{a}^{4}$$
$$= \lim_{b \to 3^{-}} \left(\frac{-1}{(b-3)} - \frac{-1}{-3} \right) + \lim_{a \to 3^{+}} \left(\frac{-1}{(4-3)} - \frac{-1}{(a-3)} \right)$$
$$= +\infty - \frac{1}{3} - 1 + \infty = \boxed{+\infty}$$

(3) (8 points) Find the limit of the sequence whose n^{th} term is $a_n = \left(\frac{2n-1}{2n}\right)^n$.

We know that $\lim_{n \to \infty} (1 + \frac{r}{n})^n = e^r$. We compute

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(1 + \frac{-1/2}{n} \right)^n = \boxed{e^{-1/2}}.$$

(4) (8 points) Find a closed formula for the sum

$$\sum_{k=2}^{100} \pi^k = \pi^2 + \pi^3 + \pi^4 + \dots + \pi^{99} + \pi^{100}.$$

Remember that a closed formula does not have any summation signs or any dots. Be sure to give a formula for the given sum and not something else.

Let
$$S = \pi^2 + \pi^3 + \pi^4 + \dots + \pi^{99} + \pi^{100}$$
. Observe that

$$\pi S = \pi^3 + \pi^4 + \dots + \pi^{99} + \pi^{100} + \pi^{101}.$$

It follows that

$$(\pi - 1)S = \pi S - S = \pi^{101} - \pi^2.$$

We conclude that

$$S = \frac{\pi^{101} - \pi^2}{(\pi - 1)}$$

Thus,

$$\pi^{2} + \pi^{3} + \pi^{4} + \dots + \pi^{99} + \pi^{100} = \frac{\pi^{101} - \pi^{2}}{(\pi - 1)}.$$

(5) (8 points) Approximate $\sum_{k=1}^{\infty} \frac{1}{k^5}$ with an error at most $\frac{4}{10^4}$. Explain what you are doing. Write in complete sentences.

Look at the picture on the picture page. We approximate the infinite sum $\sum_{k=1}^{\infty} \frac{1}{k^5}$ with the finite sum $\sum_{k=1}^{N} \frac{1}{k^5}$. We will pick *N* large enough so that the error that is incurred when this approximation is made is at most $\frac{4}{10^4}$. We see that the error is equal to

$$\left|\sum_{k=1}^{\infty} \frac{1}{k^5} - \sum_{k=1}^{N} \frac{1}{k^5}\right| = \sum_{k=N+1}^{\infty} \frac{1}{k^5}$$

= the area inside the boxes < the area under the curve

$$= \int_{N}^{\infty} \frac{1}{x^5} dx = \lim_{b \to \infty} \frac{-1}{4x^4} \Big|_{N}^{b} = \lim_{b \to \infty} \left(\frac{-1}{4b^4} + \frac{1}{4N^4} \right) = \frac{1}{4N^4}$$

We want the error to be at most $\frac{4}{10^4}$. We have shown that the error is at most $\frac{1}{4N^4}$; so, we make

$$\frac{1}{4N^4} \le \frac{4}{10^4}.$$

The most recent inequality is equivalent to $\frac{10^4}{16} \le N^4$ and this is equivalent to $\frac{10}{2} \le N$. Of course, $\frac{10}{2} = 5$. We conclude that

$$\sum_{k=1}^5 \frac{1}{k^5}$$
 approximates $\sum_{k=1}^\infty \frac{1}{k^5}$ with an error at most $\frac{4}{10^4}$

(6) (8 points) Does the series $\sum_{k=1}^{\infty} \frac{1}{k^2 + 5}$ converge? Justify your answer very thoroughly. Write in complete sentences.

We use the comparison test. We see that $k^2 \le k^2 + 5$; hence,

$$\frac{1}{k^2+5} \le \frac{1}{k^2}$$

and both numbers are positive. The p-series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ converges because p = 2 and 1 < 2. Thus,

 $\sum_{k=1}^{\infty} \frac{1}{k^2 + 5}$ also converges by part (a) of the comparison test.