Math 142, Exam 3, Solutions, Fall 2012

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. SHOW your work. This work must be coherent and correct. *CIRCLE* your answer. No Calculators or Cell phones.

The solutions will be posted later today.

1. (8 points) Find the volume of the solid that is obtained by revolving the region bounded by $y^2 = x$ and x - y = 2 about the line y = -6. You must draw a meaningful picture. (There is no need for you to do the final arithmetic. That is, you may stop as soon as you have plugged the endpoints into an anti-derivative.)

The picture appears elsewhere. The intersection points are found by solving $y^2 - y - 2 = 0$ and this is (y - 2)(y + 1) = 0. So y = 2 and y = -1. The intersection points are (1, -1) and (4, 2). Notice that these points satisfy both equations $y^2 = x$ and x - y = 2. Chop the y-axis from y = -1 to y = 2. Consider the rectangle with y-coordinate y. Revolve this rectangle about the line y = -6 to obtain a shell of volume $2\pi rht$, where t = dy, r = y + 6, and $h = y + 2 - y^2$. The volume of the shell is $2\pi rht = 2\pi (y + 6)(y + 2 - y^2)dy$. The volume of the solid is

$$2\pi \int_{-1}^{2} (y+6)(y+2-y^2)dy = 2\pi \int_{-1}^{2} (-y^3 - 5y^2 + 8y + 12)dy$$
$$= 2\pi \left(-\frac{y^4}{4} - \frac{5y^3}{3} + 4y^2 + 12y\right)\Big|_{-1}^{2}$$
$$= \left[2\pi \left(-\frac{2^4}{4} - \frac{5\cdot 2^3}{3} + 4\cdot 2^2 + 12(2) - \left(-\frac{(-1)^4}{4} - \frac{5(-1)^3}{3} + 4(-1)^2 + 12(-1)\right)\right)\right]$$

2. (7 points) Consider a solid S whose base in the xy plane is the region bounded by $y^2 = x$ and x - y = 2. Each cross-section of S perpendicular to the y-axis is a square. Find the volume of S. You must draw a meaningful picture. (There is no need for you to do the final arithmetic. That is, you may stop as soon as you have plugged the endpoints into an anti-derivative.)

The picture appears elsewhere. The intersection points are still (1, -1) and (4, 2). Chop the *y*-axis from y = -1 to y = 2. Consider the slice of *S* with

y-coordinate y. This slice is a square with thickness. The volume of the slice is the area of the square times the thickness and this is s^2t , where t = dy and $s = y + 2 - y^2$. So the volume of the slice is

$$s^{2}t = (y + 2 - y^{2})^{2}dy.$$

The volume of the solid is

$$\int_{-1}^{2} (y+2-y^2)^2 dy = \int_{-1}^{2} (y^2+4y-2y^3+4-4y^2+y^4) dx$$
$$= \int_{-1}^{2} (4y-2y^3+4-3y^2+y^4) dx = (2y^2-\frac{1}{2}y^4+4y-y^3+\frac{1}{5}y^5)\Big|_{-1}^{2}$$
$$= \boxed{\left((8-\frac{1}{2}2^4+8-8+\frac{1}{5}2^5)-(2-\frac{1}{2}-4+1-\frac{1}{5})\right)}$$

- 3. (7 points) Consider the sequence defined by $a_1 = 2$ and $a_{n+1} = \frac{1}{4-a_n}$. Justify your answers very thoroughly. Write in complete sentences.
 - (a) Prove that $0 < a_n \le 2$ for all positive integers n.
 - (b) Prove that $a_{n+1} \leq a_n$ for all positive integers n.
 - (c) State the Completeness Axiom and draw a conclusion about the sequence $\{a_n\}$ from the Completeness Axiom.
 - (d) Find the limit of the sequence $\{a_n\}$.

(a) We use the technique of Mathematical Induction. We see that $a_1 = 2$ and therefore, $0 < a_1 \leq 2$. Assume **BY INDUCTION** that $0 < a_{n-1} \leq 2$ for some **FIXED** n. Multiply by -1 to see $-2 \leq -a_{n-1} < 0$. Add 4 to see $2 \leq 4 - a_{n-1} < 4$; that is $2 \leq 4 - a_{n-1}$ and $4 - a_{n-1} < 4$. Divide the first inequality by the positive number $2(4 - a_{n-1})$ to obtain $\frac{1}{4-a_{n-1}} \leq \frac{1}{2}$. Divide the second inequality by the positive number $(4 - a_{n-1})4$ to see $\frac{1}{4} < \frac{1}{4-a_{n-1}}$. Put the inequalities back together to see: $\frac{1}{4} < \frac{1}{4-a_{n-1}} \leq \frac{1}{2}$. We have shown that

$$0 < a_{n-1} \le 2 \implies \frac{1}{4} < \frac{1}{4 - a_{n-1}} \le \frac{1}{2}.$$

Obviously, $\frac{1}{4-a_{n-1}} = a_n$, $0 < \frac{1}{4}$ and $\frac{1}{2} \le 2$; so,

$$0 < a_{n-1} \le 2 \implies 0 < a_n \le 2.$$

We saw that $0 < a_n \le 2$ for n = 1. We proved that if $0 < a_{n-1} \le 2$ for some FIXED n, then $0 < a_n \le 2$ also holds for that one FIXED n. We apply the

Principle of Mathematical Induction to conclude that $0 < a_n \leq 2$ for ALL positive integers n.

(b) We use the technique of Mathematical Induction. We see that $a_1 = 2$ and $a_2 = \frac{1}{2}$; so $a_2 \leq a_1$. Assume **BY INDUCTION** that $a_n \leq a_{n-1}$ for some **FIXED** *n*. Add $-a_n - a_{n-1}$ to both sides to see $-a_{n-1} \leq -a_n$. Add 4 to both sides to see: $4 - a_{n-1} \leq 4 - a_n$. Both numbers are positive because part (1) shows that $a_n \leq 2$ for all n. Divide both sides by the positive number $(4-a_{n-1})(4-a_n)$ to obtain $\frac{1}{4-a_n} \leq \frac{1}{4-a_{n-1}}$ and this is $a_{n+1} \leq a_n$. Thus

$$a_n \le a_{n-1} \implies a_{n+1} \le a_n.$$

We saw that $a_{n+1} \leq a_n$ for n = 1. We proved that if $a_n \leq a_{n-1}$ for some FIXED n, then $a_{n+1} \leq a_n$ also holds for that one FIXED n. We apply the Principle of Mathematical Induction to conclude that $a_{n+1} \leq a_n$ for ALL positive integers n.

(c) The completeness axiom says that every decreasing bounded sequence of real numbers has a limit. We showed in (1) and (2) that $\{a_n\}$ is an decreasing bounded sequence of real numbers. We conclude that $\lim_{n \to \infty} a_n$ exists. Let $L = \lim_{n \to \infty} a_n$. (d) Take $\lim_{n \to \infty}$ of both sides of $a_{n+1} = \frac{1}{4-a_n}$ to conclude that

$$\lim_{n \to \infty} a_{n+1} = \frac{1}{4 - \lim_{n \to \infty} a_n};$$

that is, $L = \frac{1}{4-L}$; so L(4-L) = 1 or $-L^2 + 4L = 1$. We use the quadratic formula to solve $0 = L^2 - 4L + 1$. We obtain $L = \frac{4\pm\sqrt{16-4}}{2} = \frac{4\pm 2\sqrt{3}}{2} = 2\pm\sqrt{3}$. We know that L can not be more than 2 because every term in the sequence is less than or equal to 2. So $L \neq 2 + \sqrt{3}$ and hence L does equal $2 - \sqrt{3}$.

4. (7 points) Estimate the distance between $\sum_{k=1}^{100} \frac{1}{k^4}$ and $\sum_{k=1}^{\infty} \frac{1}{k^4}$. Your answer should be in the form "The distance between $\sum_{k=1}^{100} \frac{1}{k^4}$ and $\sum_{k=1}^{\infty} \frac{1}{k^4}$ is less than xxx, where xxx is some small positive number that you have calculated. Justify your answer very thoroughly. Write in complete sentences. You must draw a meaningful picture.

The picture appears in a separate file. The distance between $\sum_{k=1}^{100} \frac{1}{k^4}$ and $\sum_{k=1}^{\infty} \frac{1}{k^4}$ is equal to

$$\sum_{k=1}^{\infty} \frac{1}{k^4} - \sum_{k=1}^{100} \frac{1}{k^4} = \sum_{k=101}^{\infty} \frac{1}{k^4} = \text{the area inside the boxes} \le \text{the area under the curve}$$

$$= \int_{100}^{\infty} \frac{1}{x^4} dx = \lim_{b \to \infty} \frac{1}{-3x^3} \Big|_{100}^b = \lim_{b \to \infty} \frac{1}{-3b^3} + \frac{1}{3(100)^3} = \frac{1}{3 \times 10^6}$$

We conclude that

The distance between
$$\sum_{k=1}^{100} \frac{1}{k^4}$$
 and $\sum_{k=1}^{\infty} \frac{1}{k^4}$ is less than $\frac{1}{3 \times 10^6}$.

5. (7 points) Consider the series $\frac{2}{5} - (\frac{2}{5})^2 + (\frac{2}{5})^3 - (\frac{2}{5})^4 + \dots$ Justify your answer very thoroughly. Write in complete sentences.

(a) Find a closed formula for the n^{th} partial sum

$$s_n = \frac{2}{5} - (\frac{2}{5})^2 + (\frac{2}{5})^3 - (\frac{2}{5})^4 + \dots + (-1)^{n+1}(\frac{2}{5})^n$$

of this series.

We see that $s_n - (-\frac{2}{5})s_n$ is equal to

$$\frac{\frac{2}{5} - (\frac{2}{5})^2 + (\frac{2}{5})^3 - (\frac{2}{5})^4 + \dots + (-1)^{n+1}(\frac{2}{5})^n \\ + (\frac{2}{5})^2 - (\frac{2}{5})^3 + (\frac{2}{5})^4 + \dots + (-1)^n (\frac{2}{5})^n + (-1)^{n+1} (\frac{2}{5})^{n+1}$$

Thus, $(1+\frac{2}{5})s_n = \frac{2}{5} + (-1)^{n+1}(\frac{2}{5})^{n+1}$ and

$s_n =$	$\frac{2}{5} + (-1)^{n+1} (\frac{2}{5})^{n+1}$
	$\frac{7}{5}$

(b) Find the sum of the entire series.

The sum of the series is the limit of the sequence of partial sums and this equals $\lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{\frac{2}{5} + (-1)^{n+1} (\frac{2}{5})^{n+1}}{\frac{7}{5}} = \frac{2}{\frac{7}{5}} = \frac{2}{7}$. Thus,

the sum of the series $\frac{2}{5} - (\frac{2}{5})^2 + (\frac{2}{5})^3 - (\frac{2}{5})^4 + \dots$ is $\frac{2}{7}$.

Of course, when $a = \frac{2}{5}$ and $r = -\frac{2}{5}$, then $\frac{a}{1-r}$ is also equal to $\frac{\frac{2}{5}}{1+\frac{2}{5}} = \frac{2}{7}$.

6. (7 points) Consider the series $\ln \frac{2}{3} + \ln \frac{3}{4} + \ln \frac{4}{5} + \ln \frac{5}{6} \dots$ Justify your answer very thoroughly. Write in complete sentences. (a) Find a closed formula for the n^{th} partial sum

$$s_n = \ln \frac{2}{3} + \ln \frac{3}{4} + \ln \frac{4}{5} + \ln \frac{5}{6} \dots + \ln \frac{n+1}{n+2}$$

of this series.

We see that

$$s_n = \begin{cases} (\ln 2 - \ln 3^*) + (\ln 3^* - \ln 4^{**}) + (\ln 4^{**} - \ln 5^{***}) + (\ln 5^{***} - \ln 6^{****}) + {}^{****} \dots^{\dagger\dagger} \\ + (\ln(n)^{\dagger\dagger} - \ln(n+1)^{\dagger}) + (\ln(n+1)^{\dagger} - \ln(n+2)). \end{cases}$$

Thus, $s_n = \ln 2 - \ln(n+2)$. (b) Find the sum of the entire series.

The sum of the series is the limit of the sequence of partial sums and this equals $\lim_{n \to \infty} s_n = \lim_{n \to \infty} (\ln 2 - \ln(n+2)) = -\infty$. We conclude that

the series
$$\ln \frac{2}{3} + \ln \frac{3}{4} + \ln \frac{4}{5} + \ln \frac{5}{6} \dots$$
 diverges to $-\infty$

7. (7 points) Does the series $\sum_{k=1}^{\infty} \frac{2k}{k^2+1}$ converge? Justify your answer very thoroughly. Write in complete sentences.

We use the Limit Comparison Test. The series $\sum_{k=1}^{\infty} \frac{1}{k}$ is the Harmonic series; this series is known to diverge. Think of the original series as $\sum a_k$ and the Harmonic series as $\sum b_k$. We compute

$$\lim_{k \to \infty} \frac{a_k}{b_k} = \lim_{k \to \infty} \frac{\frac{2k}{k^2 + 1}}{\frac{1}{k}} = \lim_{k \to \infty} \frac{2k^2}{k^2 + 1} = \lim_{k \to \infty} \frac{2}{1 + \frac{1}{k^2}} = 2.$$

We see that 2 is a number; 2 is not zero or ∞ . The Limit Comparison Test ensures that the series $\sum_{k=1}^{\infty} \frac{1}{k}$ and $\sum_{k=1}^{\infty} \frac{1}{k}$ both converge or both diverge. We have already seen that $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges. We conclude that

$$\sum_{k=1}^{\infty} \frac{2k}{k^2 + 1}$$
 also diverges.