Math 142, Exam 2, Spring 2014

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. *CIRCLE* your answer. No Calculators or Cell phones.

1. (9 points) Rotate the region between $y = 5 - x^2$ and $y = x^2 - 3$ about the line x = -6. Find the volume of the resulting solid. You must draw a meaningful picture. Write in complete sentences. Your work must be coherent, complete, and correct.

The curves intersect when $5 - x^2 = x^2 - 3$. Thus, the curves intersect when $8 = 2x^2$. Thus, the points of intersection are (-2, 1) and (2, 1). We drew a picture elsewhere. Chop the *x*-axis from x = -2 to x = 2. For each little piece of the *x*-axis, draw a rectangle from the lower parabola to the higher porabola. Consider the rectangle with *x*-coordinate *x*. Rotate the rectangle. Get a shell of volume $2\pi rht$, where t = dx, r = x + 6, and $h = 8 - 2x^2$. (Look at the picture to see the value of these parameters.) The volume of one shell is $2\pi rht = 2\pi (x + 6)(8 - 2x^2)dx$. The volume of the solid is

$$2\pi \int_{-2}^{2} (x+6)(8-2x^2)dx = 2\pi \int_{-2}^{2} (-2x^3-12x^2+8x+48)dx$$
$$= 2\pi \left(-\frac{x^4}{2}-4x^3+4x^2+48x\right)\Big|_{-2}^{2}$$
$$= 2\pi (-8-32+16+96-(-8+32+16-96)) = \boxed{4(64)\pi}.$$

2. (9 points) Let $S = \sum_{k=2}^{27} 3^k$. Find a closed formula for S. Write in complete sentences. Your work must be coherent, complete, and correct. (Answer the question that I asked. Keep in mind that a closed formula does not have any summation signs or any dots.)

We see that $3S - S = 3^{28} - 3^2$; so $S = (3^{28} - 3^2)/2$.

3. (8 points) Approximate $\sum_{k=1}^{\infty} \frac{1}{k^8}$ with an error at most $\frac{1}{7 \cdot 10^7}$. Write in complete sentences. Your work must be coherent, complete, and correct.

The series $\sum_{k=1}^{\infty} \frac{1}{k^8}$ is the *p*-series with p = 8 > 1. This series converges. We approximate $\sum_{k=1}^{\infty} \frac{1}{k^8}$ with $\sum_{k=1}^{N} \frac{1}{k^8}$, for some carefully chosen N. We used the picture on the other page to see that

$$\left|\sum_{k=1}^{\infty} \frac{1}{k^8} - \sum_{k=1}^{N} \frac{1}{k^8}\right| \le \frac{1}{7N^7}$$

We want our approximation to have error at most $\frac{1}{7 \cdot 10^7}$; so we pick N large enough that $\frac{1}{7N^7} \leq \frac{1}{7 \cdot 10^7}$. Obviously, every N with $10 \leq N$ is large enough. We conclude that

$$\sum_{k=1}^{10} \frac{1}{k^8} \text{ approximates } \sum_{k=1}^{\infty} \frac{1}{k^8} \text{ with an error at most } \frac{1}{7 \cdot 10^7}$$

4. (8 points) Does $\sum_{k=1}^{\infty} \frac{1}{k+k\cos^2 k}$ converge? Justify your answer. Write in complete sentences. Your work must be coherent, complete, and correct.

We see that $k \leq k + k \cos^2 k \leq 2k$. It follows that $\frac{1}{2k} \leq \frac{1}{k + k \cos^2 k} \leq \frac{1}{k}$. The series $\sum_{k=1}^{\infty} \frac{1}{2k}$ is one half of the harmonic series. The harmonic series diverges; so

the comparison test.

one half of the harmonic series also diverges. Thus, $\sum_{k=1}^{\infty} \frac{1}{k + k \cos^2 k}$ diverges by

5. (8 points) Does $\sum_{k=1}^{\infty} k(\frac{2}{3})^k$ converge? Justify your answer. Write in complete sentences. Your work must be coherent, complete, and correct.

Use the ratio test. Let

$$\rho = \lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \lim_{k \to \infty} \frac{(k+1)(\frac{2}{3})^{k+1}}{k(\frac{2}{3})^k} = \lim_{k \to \infty} (1+\frac{1}{k})(\frac{2}{3}) = \frac{2}{3} < 1.$$

We conclude that $\sum_{k=1}^{\infty} k(\frac{2}{3})^k$ converges by the ratio test.

6. (8 points) Does $\sum_{k=1}^{\infty} \frac{2+(-1)^k}{k\sqrt{k}}$ converge? Justify your answer. Write in complete sentences. Your work must be coherent, complete, and correct.

We see that $\frac{1}{k^{3/2}} < \frac{2+(-1)^k}{k\sqrt{k}} < \frac{3}{k^{3/2}}$. The series $\sum_{k=1}^{\infty} \frac{3}{k^{3/2}}$ is 3 times the p-series $\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$ with p = 3/2 > 1. The series $\sum_{k=1}^{\infty} \frac{1}{k^{3/2}}$ converges; thus, $\sum_{k=1}^{\infty} \frac{3}{k^{3/2}}$ converges, and

$$\sum_{k=1}^{\infty} \frac{2 + (-1)^k}{k\sqrt{k}} \text{ converges}$$

by the comparison test.