Math 142, Exam 2, Spring 2014
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. $C I R C L E$ your answer.

No Calculators or Cell phones.

1. (9 points) Rotate the region between $y=5-x^{2}$ and $y=x^{2}-3$ about the line $x=-6$. Find the volume of the resulting solid. You must draw a meaningful picture. Write in complete sentences. Your work must be coherent, complete, and correct.

The curves intersect when $5-x^{2}=x^{2}-3$. Thus, the curves intersect when $8=2 x^{2}$. Thus, the points of intersection are $(-2,1)$ and $(2,1)$. We drew a picture elsewhere. Chop the x-axis from $x=-2$ to $x=2$. For each little piece of the x-axis, draw a rectangle from the lower parabola to the higher porabola. Consider the rectangle with x-coordinate x. Rotate the rectangle. Get a shell of volume $2 \pi r h t$, where $t=d x, r=x+6$, and $h=8-2 x^{2}$. (Look at the picture to see the value of these parameters.) The volume of one shell is $2 \pi r h t=2 \pi(x+6)\left(8-2 x^{2}\right) d x$. The volume of the solid is

$$
\begin{aligned}
& 2 \pi \int_{-2}^{2}(x+6)\left(8-2 x^{2}\right) d x=2 \pi \int_{-2}^{2}\left(-2 x^{3}-12 x^{2}+8 x+48\right) d x \\
& =\left.2 \pi\left(-\frac{x^{4}}{2}-4 x^{3}+4 x^{2}+48 x\right)\right|_{-2} ^{2} \\
& =2 \pi(-8-32+16+96-(-8+32+16-96))=4(64) \pi
\end{aligned}
$$

2. (9 points) Let $S=\sum_{k=2}^{27} 3^{k}$. Find a closed formula for S. Write in complete sentences. Your work must be coherent, complete, and correct. (Answer the question that I asked. Keep in mind that a closed formula does not have any summation signs or any dots.)

We see that $3 S-S=3^{28}-3^{2}$; so $S=\left(3^{28}-3^{2}\right) / 2$.
3. (8 points) Approximate $\sum_{k=1}^{\infty} \frac{1}{k^{8}}$ with an error at most $\frac{1}{7 \cdot 10^{7}}$. Write in complete sentences. Your work must be coherent, complete, and correct.
The series $\sum_{k=1}^{\infty} \frac{1}{k^{8}}$ is the p-series with $p=8>1$. This series converges. We approximate $\sum_{k=1}^{\infty} \frac{1}{k^{8}}$ with $\sum_{k=1}^{N} \frac{1}{k^{8}}$, for some carefully chosen N. We used the picture on the other page to see that

$$
\left|\sum_{k=1}^{\infty} \frac{1}{k^{8}}-\sum_{k=1}^{N} \frac{1}{k^{8}}\right| \leq \frac{1}{7 N^{7}}
$$

We want our approximation to have error at most $\frac{1}{7 \cdot 10^{7}}$; so we pick N large enough that $\frac{1}{7 N^{7}} \leq \frac{1}{7 \cdot 10^{7}}$. Obviously, every N with $10 \leq N$ is large enough. We conclude that

$$
\sum_{k=1}^{10} \frac{1}{k^{8}} \text { approximates } \sum_{k=1}^{\infty} \frac{1}{k^{8}} \text { with an error at most } \frac{1}{7 \cdot 10^{7}}
$$

4. (8 points) Does $\sum_{k=1}^{\infty} \frac{1}{k+k \cos ^{2} k}$ converge? Justify your answer. Write in complete sentences. Your work must be coherent, complete, and correct.

We see that $k \leq k+k \cos ^{2} k \leq 2 k$. It follows that $\frac{1}{2 k} \leq \frac{1}{k+k \cos ^{2} k} \leq \frac{1}{k}$. The series $\sum_{k=1}^{\infty} \frac{1}{2 k}$ is one half of the harmonic series. The harmonic series diverges; so one half of the harmonic series also diverges. Thus, $\sum_{k=1}^{\infty} \frac{1}{k+k \cos ^{2} k}$ diverges by the comparison test.
5. (8 points) Does $\sum_{k=1}^{\infty} k\left(\frac{2}{3}\right)^{k}$ converge? Justify your answer. Write in complete sentences. Your work must be coherent, complete, and correct.
Use the ratio test. Let

$$
\rho=\lim _{k \rightarrow \infty} \frac{a_{k+1}}{a_{k}}=\lim _{k \rightarrow \infty} \frac{(k+1)\left(\frac{2}{3}\right)^{k+1}}{k\left(\frac{2}{3}\right)^{k}}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)\left(\frac{2}{3}\right)=\frac{2}{3}<1 .
$$

We conclude that $\sum_{k=1}^{\infty} k\left(\frac{2}{3}\right)^{k}$ converges by the ratio test.
6. (8 points) Does $\sum_{k=1}^{\infty} \frac{2+(-1)^{k}}{k \sqrt{k}}$ converge? Justify your answer. Write in complete sentences. Your work must be coherent, complete, and correct.

We see that $\frac{1}{k^{3 / 2}}<\frac{2+(-1)^{k}}{k \sqrt{k}}<\frac{3}{k^{3 / 2}}$. The series $\sum_{k=1}^{\infty} \frac{3}{k^{3 / 2}}$ is 3 times the p series $\sum_{k=1}^{\infty} \frac{1}{k^{3 / 2}}$ with $p=3 / 2>1$. The series $\sum_{k=1}^{\infty} \frac{1}{k^{3 / 2}}$ converges; thus, $\sum_{k=1}^{\infty} \frac{3}{k^{3 / 2}}$ converges, and

$$
\sum_{k=1}^{\infty} \frac{2+(-1)^{k}}{k \sqrt{k}} \text { converges }
$$

by the comparison test.

