Math 142, Exam 2, Spring 2016
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.
No Calculators or Cell phones.

1. (9 points) Find $\int \frac{-x^{2}+3 x+1}{x\left(x^{2}+1\right)} d x$. Please check your answer.

We look for integers A, B, and C with

$$
\frac{-x^{2}+3 x+1}{x\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} .
$$

Multiply both sides by $x\left(x^{2}+1\right)$ to obtain

$$
\begin{gathered}
-x^{2}+3 x+1=A\left(x^{2}+1\right)+(B x+C) x \\
-x^{2}+3 x+1=(A+B) x^{2}+C x+A
\end{gathered}
$$

Equate the corresponding coefficients to learn that $A+B=-1, C=3, A=1$. Drop $A=1$ into $A+B=-1$ to see that $B=-2$. We have shown that

$$
\frac{-x^{2}+3 x+1}{x\left(x^{2}+1\right)}=\frac{1}{x}+\frac{-2 x+3}{x^{2}+1} .
$$

We verify this much before continuing. The right side is

$$
\frac{\left(x^{2}+1\right)+(-2 x+3) x}{x\left(x^{2}+1\right)}=\frac{-x^{2}+3 x+1}{x\left(x^{2}+1\right)} .
$$

Now we compute

$$
\begin{gathered}
\int \frac{-x^{2}+3 x+1}{x\left(x^{2}+1\right)} d x=\int\left(\frac{1}{x}+\frac{-2 x+3}{x^{2}+1}\right) d x \\
\quad=\ln |x|-\ln \left|x^{2}+1\right|+3 \arctan x+C
\end{gathered}
$$

2. (9 points) Find $\int \frac{1}{x^{2}+6 x+10} d x$. Please check your answer.

$$
\int \frac{1}{x^{2}+6 x+10} d x=\int \frac{1}{(x+3)^{2}+1} d x=\arctan (x+3)+C
$$

3. (8 points) Find $\int_{-1}^{3} \frac{1}{(x-2)^{2}} d x$.

We drew a picture elsewhere. The picture shows that the answer is either a positive number or plus infinity.

$$
\begin{gathered}
\int_{-1}^{3} \frac{1}{(x-2)^{2}} d x=\lim _{b \rightarrow 2^{-}} \int_{-1}^{b} \frac{1}{(x-2)^{2}} d x+\lim _{a \rightarrow 2^{+}} \int_{a}^{3} \frac{1}{(x-2)^{2}} d x \\
=\left.\lim _{b \rightarrow 2^{-}} \frac{-1}{(x-2)}\right|_{-1} ^{b}+\left.\lim _{a \rightarrow 2^{+}} \frac{-1}{(x-2)}\right|_{a} ^{3} \\
=\lim _{b \rightarrow 2^{-}}\left(\frac{-1}{(b-2)}-\frac{-1}{(-1-2)}\right)+\lim _{a \rightarrow 2^{+}}\left(\frac{-1}{(3-2)}-\frac{-1}{(a-2)}\right) \\
=+\infty-\frac{1}{3}-1+\infty=+\infty
\end{gathered}
$$

4. (8 points) Find $\int \sin 3 x \cos 4 x d x$.

Add the identities

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B
\end{aligned}
$$

to obtain

$$
\sin (A+B)+\sin (A-B)=2 \sin A \cos B
$$

It follows that

$$
\frac{1}{2}[\sin (A+B)+\sin (A-B)]=\sin A \cos B
$$

and

$$
\int \sin 3 x \cos 4 x d x=\frac{1}{2} \int(\sin (7 x)-\sin x) d x=\frac{1}{2}\left(\frac{-\cos 7 x}{7}+\cos x\right)+C
$$

5. (8 points) Find the limit of the sequence whose $n^{\text {th }}$ term is $a_{n}=\left(\frac{n}{n+3}\right)^{n}$. We first do a different problem.

$$
\lim _{n \rightarrow \infty} \ln a_{n}=\lim _{n \rightarrow \infty} n \ln \left(\frac{n}{n+3}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(\frac{n}{n+3}\right)}{\frac{1}{n}}
$$

The top and the bottom both go to zero; so we apply L'hopital's rule. Keep in mind that $\ln \left(\frac{n}{n+3}\right)=\ln n-\ln (n+3)$. We learn that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \ln a_{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}-\frac{1}{n+3}}{-\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty}-n^{2}\left(\frac{1}{n}-\frac{1}{n+3}\right)=\lim _{n \rightarrow \infty}-n^{2}\left(\frac{n+3-n}{n(n+3)}\right) \\
=\lim _{n \rightarrow \infty}\left(\frac{-3 n}{n+3}\right)=\lim _{n \rightarrow \infty}\left(\frac{-3}{1+\frac{3}{n}}\right)=-3
\end{gathered}
$$

We are now ready to do the original problem:

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} e^{\ln a_{n}}=e^{-3} .
$$

6. (8 points) Write the repeating decimal $1.42 \overline{973}=1.42973973973 \ldots$ as the ratio of two integers.

Let $r=1.42973973973 \ldots$... We see that $1000 r-r=1428.31$. Thus, $999 r=1428.31$ and $r=\frac{1428.31}{999}=\frac{142831}{99900}$.

