Math 142, Exam 2, Fall 2013
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Your work must be coherent, complete, and correct.

CIRCLE your answer.

No Calculators or Cell phones.

1. (9 points) Find the area bounded by $x+y^{2}=0$ and $2 y=x+3$. You must draw a meaningful picture.

The graph of $x+y^{2}=0$ is a parabola with vertex at the origin and opening to the left. The graph of $2 y=x+3$ is the line through $\left(0, \frac{3}{2}\right)$ and $(-3,0)$. These two curves intersect when $(2 y-3)+y^{2}=0$; so $y^{2}+2 y-3=0$ or $(y+3)(y-1)=0$. The intersection occurs when $y=-3$ or $y=1$. The points of intersection are $(-1,1)$ and $(-9,-3)$. The picture is on a separate page. We chop the y-axis from -3 to 1 . The area is

$$
\begin{gathered}
\int_{-3}^{1}\left(-y^{2}-(2 y-3)\right) d y=\int_{-3}^{1}\left(-y^{2}-2 y+3\right) d y=\frac{-y^{3}}{3}-y^{2}+\left.3 y\right|_{-3} ^{1} \\
=\frac{-1}{3}-1+3-(9-9-9)=\frac{32}{3}
\end{gathered}
$$

2. (9 points) Consider a solid S. The base of S is the triangular region in the $x y$ plane with vertices $(0,0),(1,0)$, and $(0,1)$. The cross-sections of S perpendicular to the x-axis are squares. Find the volume of S. You must draw a meaningful picture.

Look at the picture that appears on the separate page. We chop the x-axis from 0 to 1 . Over each little piece of the x-axis we have a thin slice of the solid. The slice with x-coordinate x has volume $s^{2} t$, where $s=1-x$ and $t=d x$. Thus, this slice has volume $(1-x)^{2} d x$. The volume of the solid is

$$
\int_{0}^{1}(1-x)^{2} d x=-\left.\frac{(1-x)^{3}}{3}\right|_{0} ^{1}=\frac{1}{3}
$$

3. (8 points) Consider the series $\sum_{n=2}^{\infty} \ln \frac{n}{n+2}$.
(a) Find a closed formula for the partial $\operatorname{sum} s_{N}=\sum_{n=2}^{N} \ln \frac{n}{n+2}$. (Recall that a closed formula is a formula which does not have any summation signs or any dots.)
We see that

$$
\begin{aligned}
& s_{N}=\ln \frac{2}{4}+\ln \frac{3}{5}+\ln \frac{4}{6}+\ln \frac{5}{7}+\ln \frac{6}{8}+\cdots+\ln \frac{N-3}{N-1}+\ln \frac{N-2}{N}+\ln \frac{N-1}{N+1}+\ln \frac{N}{N+2} \\
& =\left(\underline{\ln 2-\underline{\ln 4})+((\ln 3-\underline{\ln 5})+(\underline{\ln 4}-\underline{\ln 6})+(\underline{\ln 5}-\underline{\ln 7})+(\underline{\ln 6}-\underline{\ln 8})} \quad \begin{array}{l}
\quad+\cdots+(\underline{\ln (N-3)}-\underline{\ln (N-1)})+(\underline{\ln (N-2)}-\underline{\ln N})+\underline{(\ln (N-1)}-\ln (N+1)) \\
\quad+(\underline{\ln N}-\underline{\ln (N+2)})
\end{array}, \quad .\right.
\end{aligned}
$$

$$
\ln 2+\ln 3-\ln (N+1)-\ln (N+2)
$$

(b) Find the sum of the series $\sum_{n=2}^{\infty} \ln \frac{n}{n+2}$. Justify your answer. Write in complete sentences.
The sum of a series is the limit of the sequence of partial sums; so

$$
\sum_{n=2}^{\infty} \ln \frac{n}{n+2}=\lim _{N \rightarrow \infty} s_{N}=\lim _{N \rightarrow \infty}(\ln 2+\ln 3-\ln (N+1)-\ln (N+2))=-\infty
$$

So,

$$
\text { the series } \sum_{n=2}^{\infty} \ln \frac{n}{n+2} \text { diverges to }-\infty
$$

4. (8 points) Approximate $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$ with an error of at most $\frac{5}{10^{5}}$. Justify your answer. Write in complete sentences.
My answer refers to the picture which appears on a separate page. We use $\sum_{n=1}^{N} \frac{1}{n^{6}}$ to approximate $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$ for some carefully chosen N. We see that the distance between $\sum_{n=1}^{N} \frac{1}{n^{6}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$ is

$$
\left|\sum_{n=1}^{\infty} \frac{1}{n^{6}}-\sum_{n=1}^{N} \frac{1}{n^{6}}\right|=\sum_{n=N+1}^{\infty} \frac{1}{n^{6}}=\text { the area inside the boxes } \leq
$$

the area under the curve $=\int_{N}^{\infty} \frac{1}{x^{6}} d x=\left.\lim _{b \rightarrow \infty} \frac{1}{-5 x^{5}}\right|_{N} ^{b}=\lim _{b \rightarrow \infty}\left(\frac{1}{-5 b^{5}}+\frac{1}{5 N^{5}}\right)=\frac{1}{5 N^{5}}$.

We want the distance between $\sum_{n=1}^{N} \frac{1}{n^{6}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$ to be at most $\frac{5}{10^{5}}$. We know that the distance between $\sum_{n=1}^{N} \frac{1}{n^{6}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{6}}$ is at most $\frac{1}{5 N^{5}}$. So, we pick N large enough that $\frac{1}{5 N^{5}} \leq \frac{5}{10^{5}}$. So we pick N large enough that $10^{5} \leq 25 N^{5}$. It is clear that when $N=10$, then $10^{5} \leq 25 N^{5}$. We conclude that

$$
\sum_{n=1}^{10} \frac{1}{n^{6}} \text { approximates } \sum_{n=1}^{\infty} \frac{1}{n^{6}} \text { with an error at most } \frac{5}{10^{5}} .
$$

5. (8 points) Does the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+n}{n^{3}}$ converge? Justify your answer. Write in complete sentences.
We compare the given series to $\sum_{n=1}^{\infty} \frac{2}{n}$, which is twice the harmonic series. The harmonic series diverges; so twice the harmonic series diverges; furthermore, we see that

$$
\frac{2}{n}<\frac{2+\frac{1}{n}}{n}=\frac{2 n^{2}+n}{n^{3}} .
$$

We apply the comparison test. That is, both series $\sum_{n=1}^{\infty} \frac{2 n^{2}+n}{n^{3}}$ and $\sum_{n=1}^{\infty} \frac{2}{n}$ are series of positive numbers, $\sum_{n=1}^{\infty} \frac{2}{n}$ diverges; each term of $\sum_{n=1}^{\infty} \frac{2 n^{2}+n}{n^{3}}$ is greater than the corresponding term of $\sum_{n=1}^{\infty} \frac{2}{n}$; hence,

$$
\sum_{n=1}^{\infty} \frac{2 n^{2}+n}{n^{3}} \text { also diverges. }
$$

6. (8 points) Does the series $\sum_{n=1}^{\infty} \frac{10^{n}}{(n+1) 4^{2 n+1}}$ converge? Justify your answer. Write in complete sentences.
We apply the ratio test. We compute

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n-1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{10^{n}}{(n+1) 4^{2 n+1}}}{\frac{10^{n-1}}{(n) 4^{2(n-1)+1}}}\right|=\lim _{n \rightarrow \infty} \frac{10^{n}}{(n+1) 4^{2 n+1}} \frac{(n) 4^{2 n-1}}{10^{n-1}}
$$

$$
=\lim _{n \rightarrow \infty} \frac{10 n}{16(n+1)}=\lim _{n \rightarrow \infty} \frac{10}{16\left(1+\frac{1}{n}\right)}=\frac{10}{16}<1
$$

Thus $\rho<1$ and

$$
\text { the series } \sum_{n=1}^{\infty} \frac{10^{n}}{(n+1) 4^{2 n+1}} \text { converges }
$$

by the ratio test.

