Math 142, Exam 2, Fall 2012

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. SHOW your work. This work must be coherent and correct. CIRCLE your answer. CHECK your answer whenever possible.
No Calculators or Cell phones.
The solutions will be posted later today.

1. (6 points) Define the definite integral. Give a complete definition. Be sure to explain all of your notation. Write in complete sentences.

Let $f(x)$ be a function defined on the closed interval $a \leq x \leq b$. For each partition P of the closed interval $[a, b]$ (so, P is $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$), let $\Delta_{i}=x_{i}-x_{i-1}$, and pick $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. The definite integral $\int_{a}^{b} f(x) d x$ is the limit over all partitions P as all Δ_{i} go to zero of $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta_{i}$.
2. (6 points) Find $\int \frac{e^{3 x}}{\sqrt{e^{3 x}+1}} d x$. Check your answer.

Let $u=e^{3 x}+1$. It follows that $d u=3 e^{3 x} d x$. The original problem is equal to

$$
\frac{1}{3} \int u^{-1 / 2} d u=\frac{1}{3}(2) u^{1 / 2}+C=\frac{2}{3} \sqrt{e^{3 x}+1}+C .
$$

Check: The derivative of the proposed answer is

$$
\frac{2}{3} \frac{1}{2}\left(e^{3 x}+1\right)^{-1 / 2} 3 e^{3 x}
$$

3. (6 points) Find $\int \frac{x^{2}-3}{(x-1)^{3}} d x$. Check your answer.

We find numbers A, B, and C with

$$
\frac{x^{2}-3}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}} .
$$

Multiply both sides by $(x-1)^{3}$ to get

$$
\begin{gathered}
x^{2}-3=A(x-1)^{2}+B(x-1)+C \\
x^{2}-3=x^{2} A-2 x A+A+B x-B+C \\
x^{2}-3=x^{2} A+x(-2 A+B)+A-B+C .
\end{gathered}
$$

Equate the corresponding coefficients to see that $1=A, 0=-2 A+B$ (so $2=B$) and $-3=A-B+C$, (so $-3-1+2=C$; that is, $-2=C$.) We check:

$$
\frac{1}{x-1}+\frac{2}{(x-1)^{2}}+\frac{-2}{(x-1)^{3}}=\frac{x^{2}-2 x+1+2 x-2-2}{(x-1)^{3}}=\frac{x^{2}-3}{(x-1)^{3}}
$$

as desired. So, the original problem is equal to

$$
\int \frac{1}{x-1}+\frac{2}{(x-1)^{2}}+\frac{-2}{(x-1)^{3}} d x=\ln |x-1|-\frac{2}{x-1}+\frac{1}{(x-1)^{2}}+C
$$

Check: The derivative of the proposed answer is

$$
\frac{1}{x-1}+\frac{2}{(x-1)^{2}}+\frac{-2}{(x-1)^{3}}
$$

and we already saw that this last expression is equal to $\frac{x^{2}-3}{(x-1)^{3}}$.
4. (6 points) Find $\int \frac{1}{x^{2}-3 x+2} d x$. Check your answer.

The denominator factors as $(x-2)(x-1)$. We find numbers A and B with

$$
\frac{1}{x^{2}-3 x+2}=\frac{A}{x-2}+\frac{B}{x-1} .
$$

Multiply both sides by $(x-1)(x-2)$ to get

$$
1=A(x-1)+B(x-2) .
$$

Plug in $x=1$ to see that $B=-1$. Plug in $x=2$ to see that $1=A$. We check that

$$
\frac{1}{x-2}+\frac{-1}{x-1}=\frac{x-1-(x-2)}{(x-1)(x-2)}=\frac{1}{(x-1)(x-2)}
$$

So, the original problem is equal to

$$
\int \frac{1}{x-2}+\frac{-1}{x-1} d x=\ln |x-2|-\ln |x-1|+C .
$$

Check: The derivative of the proposed answer is $\frac{1}{x-2}+\frac{-1}{x-1}$ and we already saw that this last expression is equal to $\frac{1}{x^{2}-3 x+2}$.
5. (6 points) Find $\int \frac{1}{4 x^{2}+8 x+5} d x$. Check your answer.

The denominator does not factor. We complete the square

$$
\int \frac{1}{4 x^{2}+8 x+5} d x=\int \frac{1}{4\left(x^{2}+2 x+\boxed{1}\right)+5-4(\sqrt{1})} d x=\int \frac{1}{4(x+1)^{2}+1} d x .
$$

Let $u=2(x+1)$. It follows that $d u=2 d x$. This integral is

$$
=\frac{1}{2} \int \frac{d u}{u^{2}+1} d x=\frac{1}{2} \arctan u+C=\frac{1}{2} \arctan (2 x+2)+C .
$$

Check: The derivative of the proposed answer is

$$
\frac{1}{2} \frac{2}{(2 x+2)^{2}+1}=\frac{1}{4 x^{2}+8 x+5} .
$$

6. (6 points) Find $\int_{-1}^{4} \frac{d x}{(x-1)^{2}}$.

The picture appears elsewhere. The function $f(x)=\frac{1}{(x-1)^{2}}$ goes to infinity as x goes to 1 . Furthermore $f(x)$ is always positive. This integral is improper and the answer is either a finite positive number or $+\infty$.

$$
\begin{gathered}
\int_{-1}^{4} \frac{d x}{(x-1)^{2}} \\
=\lim _{b \rightarrow 1^{-}} \int_{-1}^{b} \frac{d x}{(x-1)^{2}}+\lim _{a \rightarrow 1^{+}} \int_{a}^{4} \frac{d x}{(x-1)^{2}} \\
=\left.\lim _{b \rightarrow 1^{-}} \frac{-1}{(x-1)}\right|_{-1} ^{b}+\left.\lim _{a \rightarrow 1^{+}} \frac{-1}{(x-1)}\right|_{a} ^{4} \\
=\lim _{b \rightarrow 1^{-}} \frac{-1}{(b-1)}-\frac{-1}{(-1-1)}+\lim _{a \rightarrow 1^{+}} \frac{-1}{(4-1)}-\frac{-1}{(a-1)} \\
=+\infty-\frac{1}{2}+\frac{1}{3}+\infty
\end{gathered}
$$

The integral diverges to $+\infty$.
7. (7 points)Find the volume of the solid that is obtained by revolving the region bounded by $y=x^{2}$ and $y-x=2$ about the line $x=5$. You must draw a meaningful picture.

The picture appears elsewhere. The intersection points are found by solving $x^{2}-x-2=0$ and this is $(x-2)(x+1)$. So $x=2$ and $x=-1$. The intersection points are $(-1,1)$ and $(2,4)$. Notice that these points satisfy both equations $y=x^{2}$ and $y-x=2$. Chop the x-axis from $x=-1$ to $x=2$. Consider the rectangle with x-coordinate x. Revolve this rectangle about the line $x=5$ to obtain a shell of volume $2 \pi r h t$, where $t=d x, r=5-x$, and $h=x+2-x^{2}$. The volume of the shell is $2 \pi r h t=2 \pi(5-x)\left(x+2-x^{2}\right) d x$. The volume of the solid is

$$
\begin{gathered}
2 \pi \int_{-1}^{2}(5-x)\left(x+2-x^{2}\right) d x=2 \pi \int_{-1}^{2}\left(5 x+10-5 x^{2}-x^{2}-2 x+x^{3}\right) d x \\
=2 \pi \int_{-1}^{2}\left(3 x+10-6 x^{2}+x^{3}\right) d x \\
=2 \pi\left(\frac{3}{2} x^{2}+10 x-2 x^{3}+\left.\frac{1}{4} x^{4}\right|_{-1} ^{2}\right)=2 \pi\left(\left(\frac{3}{2} 2^{2}+20-16+4\right)-\left(\frac{3}{2}-10+2+\frac{1}{4}\right)\right)
\end{gathered}
$$

8. (7 points) Consider a solid S whose base in the $x y$ plane is the region bounded by $y=x^{2}$ and $y-x=2$. Each cross-section of S perpendicular to the x-axis is an equilateral triangle. Find the volume of S. You must draw a meaningful picture.
The picture appears elsewhere. The intersection points are still $(-1,1)$ and $(2,4)$. Chop the x-axis from $x=-1$ to $x=2$. Consider the slice of S with x-coordinate x. This slice is an equilateral triangle with thickness. The volume of the slice is the area of the triangle times the thickness and this is $\frac{1}{2} b h t$, where $t=d x \quad b=x+2-x^{2}$ and $h=\frac{\sqrt{3}}{2} b$. So the volume of the slice is

$$
\frac{1}{2} b h t=\frac{1}{2} b \frac{\sqrt{3}}{2} b=\frac{\sqrt{3}}{4} b^{2} t=\frac{\sqrt{3}}{4}\left(x+2-x^{2}\right)^{2} d x
$$

The volume of the solid is

$$
\begin{gathered}
\frac{\sqrt{3}}{4} \int_{-1}^{2}\left(x+2-x^{2}\right)^{2} d x=\frac{\sqrt{3}}{4} \int_{-1}^{2}\left(x^{2}+4 x-2 x^{3}+4-4 x^{2}+x^{4}\right) d x \\
=\frac{\sqrt{3}}{4} \int_{-1}^{2}\left(4 x-2 x^{3}+4-3 x^{2}+x^{4}\right) d x=\frac{\sqrt{3}}{4}\left(2 x^{2}-\frac{1}{2} x^{4}+4 x-x^{3}+\left.\frac{1}{5} x^{5}\right|_{-1} ^{2}\right) \\
=\frac{\sqrt{3}}{4}\left(\left(8-\frac{1}{2} 2^{4}+8-8+\frac{1}{5} 2^{5}\right)-\left(2-\frac{1}{2}-4+1-\frac{1}{5}\right)\right)
\end{gathered}
$$

