Math 142, Exam 1, Spring 2011 Solutions
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible.

No Calculators or Cell phones.

1. (6 points) Define the definite integral. Give a complete definition. Be sure to explain all of your notation.

Let $f(x)$ be a function defined on the closed interval $a \leq x \leq b$. For each partition P of the closed interval $[a, b]$ (so, P is $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$), let $\Delta_{i}=x_{i}-x_{i-1}$, and pick $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. The definite integral $\int_{a}^{\bar{b}} f(x) d x$ is the limit over all partitions P as all Δ_{i} go to zero of $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta_{i}$.
2. (6 points) State the Fundamental Theorem of Calculus. Be sure to explain all of your notation. (The Fundamental Theorem of Calculus as done in class has exactly one part.)

Let f be a continuous function defined on the closed interval $[a, b]$. If $F(x)$ is any antiderivative of $f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
3. (6 points) Find $\int_{1}^{2} x \sqrt{x-1} d x$.

Let $u=x-1$; so $u+1=x$ and $d u=d x$. When $x=1$, then $u=0$. When $x=2$, then $u=1$. The integral is equal to

$$
\int_{0}^{1}(u+1) \sqrt{u} d u=\int_{0}^{1}\left(u^{3 / 2}+u^{1 / 2}\right) d u=\frac{2}{5}\left(u^{5 / 2}\right)+\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{1}=\frac{2}{5}+\frac{2}{3}=\frac{16}{15}
$$

4. (7 points) Find $\int \frac{(\ln x)^{2}}{x} d x$. Check your answer.

Let $u=\ln x$. It follows that $d u=\frac{1}{x} d x$. So the original integral is equal to

$$
\int u^{2} d u=\frac{u^{3}}{3}+C=\frac{(\ln x)^{3}}{3}+C
$$

Check. The derivative of the proposed answer is

$$
3 \frac{(\ln x)^{2}}{3} \frac{1}{x} \checkmark
$$

5. (6 points) Find $\int(\ln x)^{2} d x$. Check your answer.

Try integration by parts: $\int u d v=u v-\int v d u$. Let $u=(\ln x)^{2}$ and $d v=d x$. It follows that $d u=2 \ln x\left(\frac{1}{x}\right) d x$ and $v=x$. The original integral is

$$
x(\ln x)^{2}-2 \int \ln x d x
$$

Use integration by parts again. Let $u=\ln x$ and $d v=d x$. It follows that $d u=\left(\frac{1}{x}\right) d x$ and $v=x$. The original integral is

$$
x(\ln x)^{2}-2\left(x \ln x-\int d x\right)=x(\ln x)^{2}-2(x \ln x-x)+C .
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
x 2 \ln x\left(\frac{1}{x}\right)+(\ln x)^{2}-2\left(x\left(\frac{1}{x}\right)\right. & +\ln x-1)=2 \ln x+(\ln x)^{2}-2(1+\ln x-1) \\
& =(\ln x)^{2} . \checkmark
\end{aligned}
$$

6. (7 points) Find $\int \sin ^{3} x \cos ^{2} x d x$. Check your answer.

There is an odd power of $\sin x$; so, we save one $\sin x$ and convert everything else to $\cos x$. The integral is

$$
\int\left(1-\cos ^{2} x\right) \cos ^{2} x \sin x d x
$$

Let $u=\cos x$. It follows that $d u=\sin x d x$. This integral is

$$
\begin{gathered}
-\int\left(1-u^{2}\right) u^{2} d u=-\int\left(u^{2}-u^{4}\right) d u=-\left(\frac{u^{3}}{3}-\frac{u^{5}}{5}\right)+C \\
=-\left(\frac{\cos ^{3} x}{3}-\frac{\cos ^{5} x}{5}\right)+C
\end{gathered}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
-\left(\cos ^{2} x(-\sin x)-\cos ^{4} x(-\sin x)\right)=-\cos ^{2} x(-\sin x)\left(1-\cos ^{2} x\right) \\
=\cos ^{2} x(\sin x) \sin ^{2} x .
\end{gathered}
$$

7. (6 points) Find $\int \sqrt{5+4 x-x^{2}} d x$. Check your answer.

Complete the square $5+4 x-x^{2}=5+4-\left(x^{2}-4 x+4\right)=9-(x-2)^{2}$. We let $x-2=3 \sin \theta$. It follows that $d x=3 \cos \theta d \theta$ and $9-(x-2)^{2}=9-9 \sin ^{2} \theta=$ $9 \cos ^{2} \theta$. The original problem is

$$
\begin{aligned}
& \int \sqrt{5+4 x-x^{2}} d x=\int \sqrt{9-(x-2)^{2}} d x=9 \int \cos ^{2} \theta d \theta=\frac{9}{2} \int(1+\cos 2 \theta) d \theta \\
&=\frac{9}{2}(\theta+(1 / 2) \sin 2 \theta)+C=\frac{9}{2}(\theta+\sin \theta \cos \theta)+C \\
&=\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{9-(x-2)^{2}}}{3}\right)+C \\
&=\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{5+4 x-x^{2}}}{3}\right)+C \\
&=\frac{9}{2} \arcsin \left(\frac{x-2}{3}\right)+\frac{1}{2}(x-2) \sqrt{5+4 x-x^{2}}+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
& \frac{9}{2} \frac{1 / 3}{\sqrt{1-\left(\frac{x-2}{3}\right)^{2}}}+(1 / 2)\left[(x-2) \frac{4-2 x}{2 \sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
&= \frac{9}{2} \frac{1 / 3}{\frac{1}{3} \sqrt{9-(x-2)^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
&= \frac{9}{2} \frac{1}{\sqrt{5+4 x-x^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
&=\frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[9-(x-2)^{2}+5+4 x-x^{2}\right] \\
&= \frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[2\left(5+4 x-x^{2}\right)\right]=\sqrt{5+4 x-x^{2}} .
\end{aligned}
$$

8. (6 points) Find $\int \sqrt{x^{2}+2 x} d x$. Check your answer.

We complete the square: $x^{2}+2 x=\left(x^{2}+2 x+1\right)-1=(x+1)^{2}-1$. Let $x+1=\sec \theta$. It follows that $(x+1)^{2}-1=\tan ^{2} \theta$ and $d x=\sec \theta \tan \theta d \theta$. The original problem is equal to

$$
\int \tan ^{2} \theta \sec \theta d \theta
$$

We use integration by parts. Let $u=\tan \theta$ and $d v=\sec \theta \tan \theta d \theta$. It follows that $d u=\sec ^{2} \theta d \theta$ and $v=\sec \theta$. So

$$
\begin{aligned}
\int \tan ^{2} \theta \sec \theta d \theta & =\sec \theta \tan \theta-\int \sec ^{3} \theta d \theta=\sec \theta \tan \theta-\int\left(\tan ^{2} \theta+1\right) \sec \theta d \theta \\
& =\sec \theta \tan \theta-\int \sec \theta d \theta-\int \tan ^{2} \theta \sec \theta d \theta
\end{aligned}
$$

Add $\int \tan ^{2} \theta \sec \theta d \theta$ to both sides to see that

$$
2 \int \tan ^{2} \theta \sec \theta d \theta=\sec \theta \tan \theta-\int \sec \theta d \theta .
$$

So

$$
\begin{gathered}
\int \sqrt{x^{2}+2 x} d x=\int \tan ^{2} \theta \sec \theta d \theta=(1 / 2)\left[\sec \theta \tan \theta-\int \sec \theta d \theta\right] \\
=(1 / 2)[\sec \theta \tan \theta-\ln |\sec \theta+\tan \theta|]+C \\
=(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left|(x+1)+\sqrt{x^{2}+2 x}\right|\right]+C .
\end{gathered}
$$

Check. The derivative of

$$
(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left[(x+1)+\sqrt{x^{2}+2 x}\right]\right.
$$

is

$$
\begin{aligned}
& (1 / 2)\left[\frac{(x+1)(2 x+2)}{2 \sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{2 x+2}{2 \sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right] \\
& =(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{x+1}{\sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right]
\end{aligned}
$$

$$
\begin{gathered}
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{\sqrt{x^{2}+2 x}+x+1}{\left[(x+1)+\sqrt{x^{2}+2 x}\right] \sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1}{\sqrt{x^{2}+2 x}}\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[(x+1)^{2}+x^{2}+2 x-1\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[2 x^{2}+4 x\right] \\
=\frac{1}{\sqrt{x^{2}+2 x}}\left[x^{2}+2 x\right]=\sqrt{x^{2}+2 x} .
\end{gathered}
$$

