Math 142, Exam 1, Spring 2016

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please \boxed{CIRCLE} your answer. Please **CHECK** your answer whenever possible.

No Calculators or Cell phones.

1. Find $\int \frac{dx}{(x^2-1)^{3/2}}$. Please check your answer.

Answer: Let $x = \sec \theta$. It follows that $dx = \sec \theta \tan \theta d\theta$ and $x^2 - 1 = \sec^2 \theta - 1 = \tan^2 \theta$. The original integral is

$$\int \frac{\sec\theta\tan\theta d\theta}{\tan^3\theta} = \int \frac{\cos\theta}{\sin^2\theta} d\theta = \int \csc\theta\cot\theta d\theta = -\csc\theta + C.$$

Draw a right triangle with $x = \sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}}$. So this triangle has x on the hypotenuse, 1 on the adjacent, and $\sqrt{x^2 - 1}$ on the opposite. So $\csc \theta = \frac{\text{hypotenuse}}{\text{opposite}} = \frac{x}{\sqrt{x^2 - 1}}$. Our integral is equal to

$$-\csc\theta + C = \boxed{\frac{-x}{\sqrt{x^2 - 1}} + C}.$$

Check: The derivative of the proposed answer is

$$-x(-1/2)(x^2-1)^{-3/2}(2x) - (x^2-1)^{-1/2} = (x^2-1)^{-3/2}(x^2-(x^2-1)) = (x^2-1)^{-3/2}.$$

2. Find $\int \sec^4 x \, dx$. Please check your answer.

Answer: We have to integrate an even power of $\sec x$ times some power of $\tan x$. We save $\sec^2 x$, convert all remaining $\sec x$'s into $\tan x$'s (using $\sec^2 x = \tan^2 x + 1$) and let $u = \tan x$ (and so $du = \sec^2 x dx$). So

$$\int \sec^4 x \, dx = \int (\tan^2 x + 1) \sec^2 x \, dx = \int (u^2 + 1) \, du = \frac{u^3}{3} + u + C = \boxed{\frac{\tan^3 x}{3} + \tan x + C}$$

Check: The derivative of the proposed answer is

$$\tan^2 x \sec^2 x + \sec^2 x = \sec^2 x (\tan^2 x + 1) = \sec^4 x. \checkmark$$

3. Find
$$\int \cos 3x \, \cos 4x \, dx$$
.

Answer: Add

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$
$$\cos(\theta - \phi) = \cos\theta\cos\phi + \sin\theta\sin\phi$$

to obtain

$$\cos(\theta + \phi) + \cos(\theta - \phi) = 2\cos\theta\cos\phi;$$

hence,

$$\frac{1}{2}[\cos(\theta + \phi) + \cos(\theta - \phi)] = \cos\theta\cos\phi.$$

Take $\theta = 3x$ and $\phi = 4x$ to see that

1

$$\int \cos 3x \, \cos 4x \, dx = \frac{1}{2} \int \cos(7x) + \cos(x) \, dx = \left[\frac{1}{2} \left[\frac{\sin 7x}{7} + \sin x \right] + C \right]$$

4. Find $\int e^{4x} \sin x dx$. Please check your answer.

Answer: Apply integration by parts. Let $u = e^{4x}$ and $dv = \sin x dx$. Calculate $du = 4e^{4x} dx$ and $v = -\cos x$. We see that

$$\int e^{4x} \sin x dx = -e^{4x} \cos x + 4 \int e^{4x} \cos x dx.$$

Let $u = e^{4x}$ and $dv = \cos x dx$. Calculate $du = 4e^{4x} dx$ and $v = \sin x$. We see that

$$\int e^{4x} \sin x \, dx = -e^{4x} \cos x + 4 \left[e^{4x} \sin x - 4 \int e^{4x} \sin x \, dx \right].$$

Add $16 \int e^{4x} \sin x dx$ to both sides to obtain

$$17\int e^{4x}\sin x \, dx = -e^{4x}\cos x + 4e^{4x}\sin x + C.$$

It follows that

.

$$\int e^{4x} \sin x \, dx = \frac{1}{17} \left[-e^{4x} \cos x + 4e^{4x} \sin x \right] + K = \boxed{\frac{e^{4x}}{17} \left[-\cos x + 4\sin x \right] + K}$$

Check: The derivative of the proposed answer is

$$\frac{e^{4x}}{17}[\sin x + 4\cos x + 4(-\cos x + 4\sin x)] = e^{4x}\sin x. \checkmark$$

5. Find the area of the region bounded by $y^2 - x - 1 = 0$ and y - x + 1 = 0. Please draw a meaningful picture.

Answer: The picture is on a separate page. Observe that $y^2 - 1 = x$ is a parabola, on its side shifted one unit to the left; and y + 1 = x is a line. The intersection points occur when $y^2 - (y + 1) - 1 = 0$. This occurs when $y^2 - y - 2 = 0$, or (y-2)(y+1) = 0; so y = 2 or y = -1. The intersection points are (3,2) and (0,-1). We integrate from bottom to top of right minus left. The area is

$$\int_{-1}^{2} [(y+1) - (y^2 - 1)] dy = \int_{-1}^{2} (y+2 - y^2) dy = \frac{y^2}{2} + 2y - \frac{y^3}{3} \Big|_{-1}^{2}$$
$$= \boxed{2 + 4 - \frac{8}{3} - \left(\frac{1}{2} - 2 + \frac{1}{3}\right)}.$$