Math 142, Exam 1, Spring 2016
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible. No Calculators or Cell phones.

1. Find $\int \frac{d x}{\left(x^{2}-1\right)^{3 / 2}}$. Please check your answer.

Answer: Let $x=\sec \theta$. It follows that $d x=\sec \theta \tan \theta d \theta$ and $x^{2}-1=$ $\sec ^{2} \theta-1=\tan ^{2} \theta$. The original integral is

$$
\int \frac{\sec \theta \tan \theta d \theta}{\tan ^{3} \theta}=\int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=\int \csc \theta \cot \theta d \theta=-\csc \theta+C
$$

Draw a right triangle with $x=\sec \theta=\frac{\text { hypotenuse }}{\text { adjacent }}$. So this triangle has x on the hypotenuse, 1 on the adjacent, and $\sqrt{x^{2}-1}$ on the opposite. So $\csc \theta=\frac{\text { hypotenuse }}{\text { opposite }}=\frac{x}{\sqrt{x^{2}-1}}$. Our integral is equal to

$$
-\csc \theta+C=\frac{-x}{\sqrt{x^{2}-1}}+C
$$

Check: The derivative of the proposed answer is
$-x(-1 / 2)\left(x^{2}-1\right)^{-3 / 2}(2 x)-\left(x^{2}-1\right)^{-1 / 2}=\left(x^{2}-1\right)^{-3 / 2}\left(x^{2}-\left(x^{2}-1\right)\right)=\left(x^{2}-1\right)^{-3 / 2} \cdot \checkmark$
2. Find $\int \sec ^{4} x d x$. Please check your answer.

Answer: We have to intgegrate an even power of $\sec x$ times some power of $\tan x$. We save $\sec ^{2} x$, convert all remaining $\sec x$'s into $\tan x$'s (using $\sec ^{2} x=\tan ^{2} x+1$) and let $u=\tan x$ (and so $d u=\sec ^{2} x d x$). So

$$
\int \sec ^{4} x d x=\int\left(\tan ^{2} x+1\right) \sec ^{2} x d x=\int\left(u^{2}+1\right) d u=\frac{u^{3}}{3}+u+C=\frac{\tan ^{3} x}{3}+\tan x+C
$$

Check: The derivative of the proposed answer is

$$
\tan ^{2} x \sec ^{2} x+\sec ^{2} x=\sec ^{2} x\left(\tan ^{2} x+1\right)=\sec ^{4} x
$$

3. Find $\int \cos 3 x \cos 4 x d x$.

Answer: Add

$$
\begin{aligned}
\cos (\theta+\phi) & =\cos \theta \cos \phi-\sin \theta \sin \phi \\
\cos (\theta-\phi) & =\cos \theta \cos \phi+\sin \theta \sin \phi
\end{aligned}
$$

to obtain

$$
\cos (\theta+\phi)+\cos (\theta-\phi)=2 \cos \theta \cos \phi ;
$$

hence,

$$
\frac{1}{2}[\cos (\theta+\phi)+\cos (\theta-\phi)]=\cos \theta \cos \phi
$$

Take $\theta=3 x$ and $\phi=4 x$ to see that

$$
\int \cos 3 x \cos 4 x d x=\frac{1}{2} \int \cos (7 x)+\cos (x) d x=\frac{1}{2}\left[\frac{\sin 7 x}{7}+\sin x\right]+C
$$

4. Find $\int e^{4 x} \sin x d x$. Please check your answer.

Answer: Apply integration by parts. Let $u=e^{4 x}$ and $d v=\sin x d x$. Calculate $d u=4 e^{4 x} d x$ and $v=-\cos x$. We see that

$$
\int e^{4 x} \sin x d x=-e^{4 x} \cos x+4 \int e^{4 x} \cos x d x
$$

Let $u=e^{4 x}$ and $d v=\cos x d x$. Calculate $d u=4 e^{4 x} d x$ and $v=\sin x$. We see that

$$
\int e^{4 x} \sin x d x=-e^{4 x} \cos x+4\left[e^{4 x} \sin x-4 \int e^{4 x} \sin x d x\right]
$$

Add $16 \int e^{4 x} \sin x d x$ to both sides to obtain

$$
17 \int e^{4 x} \sin x d x=-e^{4 x} \cos x+4 e^{4 x} \sin x+C
$$

It follows that

$$
\int e^{4 x} \sin x d x=\frac{1}{17}\left[-e^{4 x} \cos x+4 e^{4 x} \sin x\right]+K=\frac{e^{4 x}}{17}[-\cos x+4 \sin x]+K
$$

Check: The derivative of the proposed answer is

$$
\frac{e^{4 x}}{17}[\sin x+4 \cos x+4(-\cos x+4 \sin x)]=e^{4 x} \sin x
$$

5. Find the area of the region bounded by $y^{2}-x-1=0$ and $y-x+1=0$. Please draw a meaningful picture.

Answer: The picture is on a separate page. Observe that $y^{2}-1=x$ is a parabola, on its side shifted one unit to the left; and $y+1=x$ is a line. The intersection points occur when $y^{2}-(y+1)-1=0$. This occurs when $y^{2}-y-2=0$, or $(y-2)(y+1)=0$; so $y=2$ or $y=-1$. The intersection points are $(3,2)$ and $(0,-1)$. We integrate from bottom to top of right minus left. The area is

$$
\begin{gathered}
\int_{-1}^{2}\left[(y+1)-\left(y^{2}-1\right)\right] d y=\int_{-1}^{2}\left(y+2-y^{2}\right) d y=\frac{y^{2}}{2}+2 y-\left.\frac{y^{3}}{3}\right|_{-1} ^{2} \\
=2+4-\frac{8}{3}-\left(\frac{1}{2}-2+\frac{1}{3}\right)
\end{gathered}
$$

