Math 142, Exam 1, Spring 2014
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. Your work must be coherent, complete, and correct. $C I R C L E$ your answer. CHECK your answer whenever possible.

No Calculators or Cell phones.

1. Define the definite integral. Give a complete definition. Be sure to explain all of your notation. Write in complete sentences.

Let $f(x)$ be a function defined on the closed interval $a \leq x \leq b$. For each partition P of the closed interval $[a, b]$ of the form $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$, let $\Delta_{i}=x_{i}-x_{i-1}$, and pick $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. The definite integral $\int_{a}^{b} f(x) d x$ is the limit over all partitions P as all Δ_{i} go to zero of $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta_{i}$.

2. Find $\int \sin ^{5} x \cos ^{6} x d x$. Check your answer.

Save one $\sin x$. Convert the remaining $\sin ^{4} x=\left(\sin ^{2} x\right)^{2}$ into cosines. Let $u=\cos x$. It follows that $d u=-\sin x d x$. We see that

$$
\begin{gathered}
\int \sin ^{5} x \cos ^{6} x d x=\int\left(1-\cos ^{2} x\right)^{2} \cos ^{6} x \sin x d x=-\int\left(1-u^{2}\right)^{2} u^{6} d u \\
=-\int\left(1-2 u^{2}+u^{4}\right) u^{6} d u=-\int\left(u^{6}-2 u^{8}+u^{10}\right) d u=-\left(\frac{u^{7}}{7}-2 \frac{u^{9}}{9}+\frac{u^{11}}{11}\right)+C \\
=-\left(\frac{\cos ^{7} x}{7}-2 \frac{\cos ^{9} x}{9}+\frac{\cos ^{11} x}{11}\right)+C .
\end{gathered}
$$

CHECK: The derivative of the proposed answer is

$$
\begin{gathered}
-\left(\cos ^{6} x(-\sin x)-2 \cos ^{8} x(-\sin x)+\cos ^{10} x(-\sin x)\right) \\
=\sin x \cos ^{6} x\left(1-2 \cos ^{2} x+\cos ^{4} x\right)=\sin x \cos ^{6} x\left(1-\cos ^{2} x\right)^{2} \\
=\sin x \cos ^{6} x\left(\sin ^{2} x\right)^{2}=\sin ^{5} x \cos ^{6} x .
\end{gathered}
$$

3. Find $\int \frac{d x}{\sqrt{12 x-4 x^{2}-8}}$. Check your answer.

We see that

$$
\begin{gathered}
\int \frac{d x}{\sqrt{12 x-4 x^{2}-8}}=\int \frac{d x}{\sqrt{-4\left(x^{2}-3 x+\boxed{\frac{9}{4}}\right)+4\left(\frac{9}{4}-8\right.}} \\
=\int \frac{d x}{\sqrt{1-4\left(x-\frac{3}{2}\right)^{2}}}=\int \frac{d x}{\sqrt{1-(2 x-3)^{2}}} .
\end{gathered}
$$

Let $u=2 x-3$. It follows that $d u=2 d x$. Thus,

$$
\int \frac{d x}{\sqrt{12 x-4 x^{2}-8}}=\frac{1}{2} \int \frac{d u}{\sqrt{1-u^{2}}}=\frac{1}{2} \arcsin u+C=\frac{1}{2} \arcsin (2 x-3)+C .
$$

CHECK: The derivative of the proposed answer is

$$
\frac{1}{2} \frac{2}{\sqrt{1-(2 x-3)^{2}}}=\frac{1}{\sqrt{-4 x^{2}+12 x-8}} . \checkmark .
$$

4. Find $\int \frac{\left(x^{2}+3\right) d x}{(x+1)^{3}}$. Check your answer.

We apply the technique of partial fractions and find constants A, B, and C with

$$
\frac{\left(x^{2}+3\right)}{(x+1)^{3}}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C}{(x+1)^{3}} .
$$

Multiply both sides by $(x+1)^{3}$ to obtain

$$
x^{2}+3=A(x+1)^{2}+B(x+1)+C .
$$

Thus,

$$
\begin{array}{r}
x^{2}+3=A x^{2}+2 A x+A \\
+B x+B \\
+C .
\end{array}
$$

Equate the corresponding coefficients to see $A=1,2 A+B=0$, and $A+B+C=3$. It follows that $A=1, B=-2$, and $C=4$. We verify
$\frac{1}{x+1}+\frac{-2}{(x+1)^{2}}+\frac{4}{(x+1)^{3}}=\frac{(x+1)^{2}-2(x+1)+4}{(x+1)^{3}}=\frac{x^{2}+2 x+1-2 x-2+4}{(x+1)^{3}}$

$$
=\frac{x^{2}+3}{(x+1)^{3}}
$$

Now we do the integral

$$
\begin{gathered}
\int \frac{\left(x^{2}+3\right) d x}{(x+1)^{3}}=\int \frac{1}{x+1}+\frac{-2}{(x+1)^{2}}+\frac{4}{(x+1)^{3}} d x \\
=\ln |x+1|+\frac{2}{x+1}+\frac{-2}{(x+1)^{2}}+C
\end{gathered}
$$

5. Find $\int e^{5 x} \sin x d x$. Check your answer.

Use integration by parts. Let $u=e^{5 x}$ and $d v=\sin x d x$. Compute $d u=5 e^{5 x} d x$ and $v=-\cos x$. We have

$$
\int e^{5 x} \sin x d x=-e^{5 x} \cos x+5 \int e^{5 x} \cos x d x
$$

Use intgration by parts again. Let $u=e^{5 x}$ and $d v=\cos x d x$. Compute $d u=5 e^{5 x} d x$ and $v=\sin x$. We have

$$
\int e^{5 x} \sin x d x=-e^{5 x} \cos x+5\left[e^{5 x} \sin x-5 \int e^{5 x} \sin x d x\right]
$$

Add $25 \int e^{5 x} \sin x d x$ to both sides to see that

$$
26 \int e^{5 x} \sin x d x=-e^{5 x} \cos x+5 e^{5 x} \sin x+C
$$

Divide both sides by 26 to conclude that

$$
\int e^{5 x} \sin x d x=\frac{1}{26}\left[-e^{5 x} \cos x+5 e^{5 x} \sin x\right]+K
$$

where K is the constant $\frac{C}{26}$.
CHECK: The derivative of the proposed answer is

$$
\frac{1}{26}\left[\begin{array}{r}
e^{5 x} \sin x-5 e^{5 x} \cos x \\
+25 e^{5 x} \sin x+5 e^{5 x} \cos x
\end{array}\right]=e^{5 x} \sin x \checkmark
$$

