Math 142, Exam 1, Fall 2015, Solutions

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible. No Calculators or Cell phones.

1. Find $\int \sin ^{2} x \cos ^{3} x d x$. Please check your answer.

Save $\cos x$. Convert the rest of the $\cos x$'s to $\sin x$. The integral equals

$$
\int \sin ^{2} x\left(1-\sin ^{2} x\right) \cos x d x
$$

Let $u=\sin x$. It follows that $d u=\cos x d x$. Thus,

$$
\begin{gathered}
\int \sin ^{2} x \cos ^{3} x d x=\int u^{2}\left(1-u^{2}\right) d u=\int\left(u^{2}-u^{4}\right) d u \\
\quad=\frac{u^{3}}{3}-\frac{u^{5}}{5}+C=\frac{\sin ^{3} x}{3}-\frac{\sin ^{5} x}{5}+C
\end{gathered}
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
\sin ^{2} x \cos x-\sin ^{4} x \cos x & =\sin ^{2} x \cos x\left(1-\sin ^{2} x\right)=\sin ^{2} x \cos x \cos ^{2} x \\
& =\sin ^{2} x \cos ^{3} x
\end{aligned}
$$

2. Find $\int \frac{d x}{\sqrt{x^{2}+2 x+17}}$. Please check your answer.

$$
\int \frac{d x}{\sqrt{x^{2}+2 x+17}}=\int \frac{d x}{\sqrt{x^{2}+2 x+\square+17-\square}}
$$

Fill in the box with (one half of 2$)^{2}$ because $x^{2}+2 x+1=(x+1)^{2}$

$$
\int \frac{d x}{\sqrt{x^{2}+2 x+17}}=\int \frac{d x}{\sqrt{x^{2}+2 x+\boxed{1}+17-\boxed{1}}}=\int \frac{d x}{\sqrt{(x+1)^{2}+16}}
$$

Let $x+1=4 \tan \theta$. It follows that

$$
(x+1)^{2}+16=16 \tan ^{2} \theta+16=16\left(\tan ^{2} \theta+1\right)=16 \sec ^{2} \theta
$$

and $d x=4 \sec ^{2} \theta d \theta$. So,

$$
\begin{gathered}
\quad \int \frac{d x}{\sqrt{x^{2}+2 x+17}}
\end{gathered}=\int \frac{4 \sec ^{2} \theta}{4 \sec \theta} d \theta=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C, \quad\left|\frac{\sqrt{x^{2}+2 x+17}}{4}+\frac{x+1}{4}\right|+C=\ln \left|\sqrt{x^{2}+2 x+17}+x+1\right|-\ln 4+C,
$$

where $K=-\ln 4+C$.
Check. The derivative of the proposed answer is

$$
\begin{gathered}
\frac{\frac{2 x+2}{2 \sqrt{x^{2}+2 x+17}}+1}{\sqrt{x^{2}+2 x+17}+x+1}=\frac{\frac{2(x+1)}{2 \sqrt{x^{2}+2 x+17}}+1}{\sqrt{x^{2}+2 x+17}+x+1}=\frac{\frac{(x+1)}{\sqrt{x^{2}+2 x+17}}+1}{\sqrt{x^{2}+2 x+17}+x+1} \\
\left.=\frac{(x+1)+\sqrt{x^{2}+2 x+17}}{\sqrt{x^{2}+2 x+17}\left(\sqrt{x^{2}+2 x+17}+x+1\right.}\right) \\
=\frac{1}{\sqrt{x^{2}+2 x+17}} .
\end{gathered}
$$

3. Find $\int \frac{x d x}{e^{3 x}}$. Please check your answer.

Use integration by parts. Let $u=x$ and $d v=e^{-3 x} d x$. Compute $d u=d x$ and $v=\frac{-1}{3} e^{-3 x}$. It follows that

$$
\int \frac{x d x}{e^{3 x}}=u v-\int v d u=\frac{-x}{3} e^{-3 x}+\frac{1}{3} \int e^{-3 x} d x=\frac{-x}{3} e^{-3 x}-\frac{1}{9} e^{-3 x}+C
$$

Check. The derivative of the proposed answer is

$$
(-3) \frac{-x}{3} e^{-3 x}+\frac{-1}{3} e^{-3 x}+\frac{1}{3} e^{-3 x}=x e^{-3 x} \cdot \checkmark
$$

4. Find $\int e^{7 x} \sin x d x$. Please check your answer.

Use parts. Let $u=e^{7 x}$ and $d v=\sin x d x$. It follows that $d u=7 e^{7 x}$ and $v=-\cos x$. Thus,

$$
\int e^{7 x} \sin x d x=-e^{7 x} \cos x+7 \int e^{7 x} \cos x d x
$$

Use parts again. This time let $u=e^{7 x}$ and $d v=\cos x d x$. We compute $d u=7 e^{7 x} d x$ and $v=\sin x$. We now have

$$
\int e^{7 x} \sin x d x=-e^{7 x} \cos x+7\left(e^{7 x} \sin x-7 \int e^{7 x} \sin x d x\right)
$$

Add $49 \int e^{7 x} \sin x d x$ to both sides to learn that

$$
\begin{aligned}
& 50 \int e^{7 x} \sin x d x=-e^{7 x} \cos x+7 e^{7 x} \sin x+C \\
& \int e^{7 x} \sin x d x=\frac{1}{50}\left(-e^{7 x} \cos x+7 e^{7 x} \sin x\right)+K
\end{aligned}
$$

where $K=C / 50$.

$$
\int e^{7 x} \sin x d x=\frac{e^{7 x}}{50}(-\cos x+7 \sin x)+K
$$

Check. The derivative of the proposed answer is

$$
\frac{e^{7 x}}{50}(\sin x+7 \cos x)+7 \frac{e^{7 x}}{50}(-\cos x+7 \sin x)=50 \frac{e^{7 x}}{50} \sin x=e^{7 x} \sin x
$$

5. Find $\int \frac{x^{4}}{\sqrt[3]{1+x^{5}}} d x$. Please check your answer.

Let $u=1+x^{5}$. It follows that $d u=5 x^{4} d x$ and

$$
\int \frac{x^{4}}{\sqrt[3]{1+x^{5}}} d x=\frac{1}{5} \int u^{-1 / 3} d u=\frac{1}{5} \frac{3}{2} u^{2 / 3}+C=\frac{3}{10}\left(1+x^{5}\right)^{2 / 3}+C
$$

Check. The derivative of the proposed answer is

$$
\frac{3}{10} \frac{2}{3}\left(1+x^{5}\right)^{-1 / 3} 5 x^{4}=x^{4}\left(1+x^{5}\right)^{-1 / 3}
$$

