Math 142, Exam 1, Fall 2013

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Your work must be coherent, complete, and correct. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators or Cell phones.**

1. (9 points) Define the definite integral. Give a complete definition. Be sure to explain all of your notation. Write in complete sentences.

Let f(x) be a function defined on the closed interval $a \leq x \leq b$. For each partition P of the closed interval [a, b] of the form $a = x_0 \leq x_1 \leq \cdots \leq x_n = b$), let $\Delta_i = x_i - x_{i-1}$, and pick $x_i^* \in [x_{i-1}, x_i]$. The definite integral $\int_a^b f(x) dx$ is the limit over all partitions P as all Δ_i go to zero of $\sum_{i=1}^n f(x_i^*) \Delta_i$.

2. (9 points) Find $\int \sin^4 x \cos^5 x dx$. Check your answer.

Let $u = \sin x$. In this case, $du = \cos x dx$ and

$$\int \sin^4 x \cos^5 x dx = \int \sin^4 x (1 - \sin^2 x)^2 \cos x dx = \int u^4 (1 - 2u^2 + u^4) du$$
$$= \int (u^4 - 2u^6 + u^8) du = \frac{u^5}{5} - 2\frac{u^7}{7} + \frac{u^9}{9} + C = \boxed{\frac{\sin^5 x}{5} - 2\frac{\sin^7}{7} + \frac{\sin^9 x}{9} + C}$$

Check: The derivative of the proposed answer is

$$\sin^4 x \cos x - 2\sin^6 x \cos x + \sin^8 x \cos x = \sin^4 x \cos x (1 - 2\sin^2 x + \sin^4 x)$$
$$= \sin^4 x \cos x (1 - \sin^2 x)^2 = \sin^4 x \cos^5 x. \checkmark$$

3. (8 points) Find $\int \frac{dx}{4x^2+12x+13}$. Check your answer.

Observe that $4x^2 + 12x + 13 = 4(x^2 + 3x + \frac{9}{4}) + 13 - 4\frac{9}{4} = 4(x + \frac{3}{2})^2 + 4 = (2x+3)^2 + 4$. It follows that

$$\int \frac{dx}{4x^2 + 12x + 13} = \int \frac{dx}{(2x+3)^2 + 4} = \int \frac{dx}{4((x+\frac{3}{2}))^2 + 1}$$

$$= \boxed{\frac{1}{4}\arctan(x+\frac{3}{2}) + C}$$

Check: The derivative of the proposed answer is

$$\frac{1}{4((x+\frac{3}{2})^2+1)} = \frac{1}{4(x^2+3x+\frac{9}{4}+1)} = \frac{1}{4x^2+12x+13}$$

4. (8 points) Find $\int \frac{dx}{x^2+x-12}$. Check your answer.

Observe that $x^2 + x - 12 = (x - 3)(x + 4)$. We use the technique of partial fractions:

$$\frac{1}{(x-3)(x+4)} = \frac{A}{x-3} + \frac{B}{(x+4)}.$$
$$1 = A(x+4) + B(x-3)$$

Plug in x = -4 to learn $B = \frac{-1}{7}$. Plug in x = 3 to learn $A = \frac{1}{7}$. We check

$$\frac{1}{7} \left[\frac{1}{x-3} - \frac{1}{x+4} \right] = \frac{1}{7} \frac{7}{(x-3)(x+4)} = \frac{1}{x^2 + x - 12}$$

So

$$\int \frac{dx}{x^2 + x - 12} = \frac{1}{7} \int \left[\frac{1}{x - 3} - \frac{1}{x + 4} \right] dx = \boxed{\frac{1}{7} \left[\ln|x - 3| - \ln|x + 4| \right] + C}$$

5. (8 points) Find $\int_{-2}^{4} \frac{dx}{(x-1)^2}$.

The solution is on a separate piece of paper.

6. (8 points) Find $\int e^{2x} \cos(3x) dx$. Check your answer.

Let $u = e^{2x}$ and $dv = \cos(3x)dx$. We calculate $du = 2e^{2x}dx$ and $v = \frac{\sin(3x)}{3}$. We have

$$\int e^{2x} \cos(3x) dx = e^{2x} \frac{\sin(3x)}{3} - \frac{2}{3} \int e^{2x} \sin(3x) dx$$

Let $u = e^{2x}$ and $dv = \sin(3x)dx$. We calculate $du = 2e^{2x}dx$ and $v = \frac{-\cos(3x)}{3}$.

$$\int e^{2x} \cos(3x) dx = e^{2x} \frac{\sin(3x)}{3} - \frac{2}{3} \int e^{2x} \sin(3x) dx$$
$$= e^{2x} \frac{\sin(3x)}{3} - \frac{2}{3} \left[e^{2x} \frac{-\cos(3x)}{3} + \frac{2}{3} \int e^{2x} \cos(3x) dx \right]$$

Add $\frac{4}{9}\int e^{2x}\cos(3x)dx$ to both sides.

$$\frac{13}{9} \int e^{2x} \cos(3x) dx = e^{2x} \frac{\sin(3x)}{3} + \frac{2}{9} e^{2x} \cos(3x) + C$$
$$\int e^{2x} \cos(3x) dx = \frac{9}{13} \left[e^{2x} \frac{\sin(3x)}{3} + \frac{2}{9} e^{2x} \cos(3x) \right] + C$$