Math 142, Exam 1, SOLUTION, Fall 2011
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible.

No Calculators or Cell phones.

1. (6 points) Define the definite integral. Give a complete definition. Be sure to explain all of your notation. Write in complete sentences.

Answer: Let $f(x)$ be a function defined on the closed interval $a \leq x \leq b$. For each partition P of the closed interval $[a, b]$ (so, P is $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$), let $\Delta_{i}=x_{i}-x_{i-1}$, and pick $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. The definite integral $\int_{a}^{b} f(x) d x$ is the limit over all partitions P as all Δ_{i} go to zero of $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta_{i}$.
2. (6 points) State both parts of the Fundamental Theorem of Calculus. Be sure to explain all of your notation. Write in complete sentences.

Answer: Let f be a continuous function defined on the closed interval $[a, b]$.
(a) If $A(x)$ is the function $A(x)=\int_{a}^{x} f(t) d t$, for all $x \in[a, b]$, then $A^{\prime}(x)=f(x)$ for all $x \in[a, b]$.
(b) If $F(x)$ is any antiderivative of $f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
3. (6 points) Find $\int \sin ^{2} x d x$.

Answer: The given integral is equal to

$$
\frac{1}{2} \int(1-\cos 2 x) d x=\frac{1}{2}\left(x-\frac{\sin 2 x}{2}\right)+C .
$$

4. (6 points) Find $\int \sin ^{5} x d x$. Check your answer.

Answer: Save one $\sin x$ and convert the rest of the $\sin x$'s to $\cos x$. The given integral is equal to $\int\left(1-\cos ^{2} x\right)^{2} \sin x d x$. Let $u=\cos x$. It follows that $d u=-\sin x d x$. The original integral is equal to

$$
-\int\left(1-u^{2}\right)^{2} d u=-\int\left(1-2 u^{2}+u^{4}\right) d u=-\left(u-\frac{2}{3} u^{3}+\frac{1}{5} u^{5}\right)+C
$$

$$
=-\cos x+\frac{2}{3} \cos ^{3} x-\frac{1}{5} \cos ^{5} x+C
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\sin x+2 \cos ^{2} x(-\sin x)-\cos ^{4} x(-\sin x)=\sin x\left(1-2 \cos ^{2} x+\cos ^{4} x\right) \\
=\sin x\left(1-\cos ^{2} x\right)^{2}=\sin ^{5} x .
\end{gathered}
$$

5. (6 points) Find $\int e^{3 x} \sin x d x$. Check your answer.

Answer: Use integration by parts. Let $u=e^{3 x}$ and $d v=\sin x d x$. It follows that $d u=3 e^{3 x} d x$ and $v=-\cos x$. We have:

$$
\int e^{3 x} \sin x d x=-e^{3 x} \cos x+3 \int e^{3 x} \cos x d x
$$

Let $u=e^{3 x}$ and $d v=\cos x d x$. It follows that $d u=3 e^{3 x} d x$ and $v=\sin x$. We have:

$$
\begin{aligned}
& \int e^{3 x} \sin x d x=-e^{3 x} \cos x+3 \int e^{3 x} \cos x d x \\
= & -e^{3 x} \cos x+3\left(e^{3 x} \sin x-3 \int e^{3 x} \sin x d x\right) .
\end{aligned}
$$

So,

$$
\int e^{3 x} \sin x d x=-e^{3 x} \cos x+3 e^{3 x} \sin x-9 \int e^{3 x} \sin x d x
$$

Add $9 \int e^{3 x} \sin x d x$ to both sides of the equation to get

$$
10 \int e^{3 x} \sin x d x=-e^{3 x} \cos x+3 e^{3 x} \sin x
$$

Divide by 10 ; don't forget to add $+C$. We have

$$
\int e^{3 x} \sin x d x=\frac{1}{10}\left(-e^{3 x} \cos x+3 e^{3 x} \sin x\right)+C \text {. }
$$

Check. The derivative of the proposed answer is

$$
\frac{1}{10}\left(-e^{3 x}(-\sin x)-3 e^{3 x} \cos x+3 e^{3 x} \cos x+9 e^{3 x} \sin x\right)=e^{3 x} \sin x . \checkmark
$$

6. (5 points) Find $\int \frac{d x}{x^{2}-5 x+6}$. Check your answer.

Answer: We see that $x^{2}-5 x+6=(x-2)(x-3)$. We use the technique of partial fractions:

$$
\frac{1}{(x-2)(x-3)}=\frac{A}{(x-2)}+\frac{B}{(x-3)}
$$

Multiply both sides by $(x-2)(x-3)$:

$$
1=A(x-3)+B(x-2)
$$

Plug in $x=3$ to learn that $B=1$. Plug in $x=2$ to learn that $A=-1$. Verify that

$$
\frac{-1}{(x-2)}+\frac{1}{(x-3)}=\frac{-(x-3)+(x-2)}{(x-2)(x-3)}=\frac{1}{(x-2)(x-3)} .
$$

The original integral is

$$
\int\left(\frac{-1}{(x-2)}+\frac{1}{(x-3)}\right) d x=-\ln |x-2|+\ln |x-3|+C .
$$

Check. The derivative of the proposed answer is

$$
\frac{-1}{(x-2)}+\frac{1}{(x-3)}=\frac{1}{(x-2)(x-3)}
$$

7. (5 points) Find $\int \frac{d x}{4 x^{2}+4 x+10}$. Check your answer.

Answer: The denominator does not factor; so we see that

$$
4 x^{2}+4 x+10=(2 x+1)^{2}+9
$$

Let $2 x+1=3 \tan \theta$. We compute

$$
4 x^{2}+4 x+10=(2 x+1)^{2}+1=(3 \tan \theta)^{2}+9=9\left(\tan ^{2} \theta+1\right)=9 \sec ^{2} \theta
$$

We also compute $2 d x=3 \sec ^{2} \theta d \theta$. The integral is

$$
\frac{1}{2} \int \frac{3 \sec ^{2} \theta d \theta}{9 \sec ^{2} \theta}=\frac{1}{6} \int 1 d \theta=\frac{1}{6} \theta+C=\frac{1}{6} \arctan \left(\frac{2 x+1}{3}\right)+C
$$

Check. The derivative of the proposed answer is

$$
\left(\frac{1}{6}\right)\left(\frac{\frac{2}{3}}{\left(\frac{2 x+1}{3}\right)^{2}+1}\right)=\frac{1}{9\left[\left(\frac{2 x+1}{3}\right)^{2}+1\right]}=\frac{1}{4 x^{2}+4 x+1+9} . \checkmark
$$

8. (5 points) Find $\int \frac{e^{1 / x}}{x^{2}} d x$. Check your answer.

Answer: Let $u=\frac{1}{x}$. It follows that $d u=\frac{-d x}{x^{2}}$. The integral is

$$
-\int e^{u} d u=-e^{u}+C=-e^{\frac{1}{x}}
$$

Check. The derivative of the proposed answer is

$$
-e^{\frac{1}{x}}\left(\frac{-1}{x^{2}}\right) \cdot \checkmark
$$

9. (5 points) Find $\int \sqrt{1-x^{2}} d x$. Check your answer. Let $x=\sin \theta$. It follows that $d x=\cos \theta d \theta$. One computes that

$$
\sqrt{1-x^{2}}=\sqrt{1-\sin ^{2} x}=\sqrt{\cos ^{2} x}=\cos x
$$

hence, the integral is

$$
\begin{gathered}
\int \cos ^{2} \theta d \theta=\frac{1}{2} \int(1+\cos 2 \theta) d \theta=\frac{1}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)+C \\
=\frac{1}{2}\left(\theta+\frac{2 \sin \theta \cos \theta}{2}\right)+C=\frac{1}{2}(\theta+\sin \theta \cos \theta)+C \\
=\frac{1}{2}\left(\arcsin x+x \sqrt{1-x^{2}}\right)+C
\end{gathered}
$$

Answer:

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\frac{1}{2}\left(\frac{1}{\sqrt{1-x^{2}}}+x \frac{-2 x}{2 \sqrt{1-x^{2}}}+\sqrt{1-x^{2}}\right)=\frac{1}{2 \sqrt{1-x^{2}}}\left(1-x^{2}+1-x^{2}\right)=\frac{1-x^{2}}{\sqrt{1-x^{2}}} \\
=\sqrt{1-x^{2}} .
\end{gathered}
$$

