Math 142, Exam 1, Fall 2010
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. SHOW your work. CIRCLE your answer.
CHECK your answer whenever possible.

No Calculators or Cell phones.

1. (6 points) Define the definite integral. Give a complete definition. Be sure to explain all of your notation.

Let $f(x)$ be a continuous function defined on the closed interval $[a, b]$. For each partition P of $[a, b]$ of the form $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$, let M_{i} be the maximum value of $f(x)$ on the subinterval $\left[x_{i-1}, x_{i}\right]$ and let m_{i} be the minimum value of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$. If there is exactly one number with

$$
\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \leq \text { this number } \leq \sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)
$$

as P varies over all partitions of $[a, b]$, then this number is called the definite integral of f on $[a, b]$ and this number is denoted $\int_{a}^{b} f(x) d x$.
2. (6 points) State both parts of the Fundamental Theorem of Calculus. Be sure to explain all of your notation.

Let f be a continuous function defined on the closed interval $[a, b]$.
(a) If $A(x)$ is the function $A(x)=\int_{a}^{x} f(t) d t$, for all $x \in[a, b]$, then $A^{\prime}(x)=f(x)$ for all $x \in[a, b]$.
(b) If $F(x)$ is any antiderivative of $f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
3. (6 points) Find $\int_{1}^{2} \frac{e^{1 / x}}{x^{2}} d x$.

Answer: Let $u=1 / x$. Then $d u=-x^{-2} d x$. When $x=1$, then $u=1$. When $x=2$, then $u=1 / 2$. The integral is equal to

$$
-\int_{1}^{1 / 2} e^{u} d u=-\left.e^{u}\right|_{1} ^{1 / 2}=e-\sqrt{e} .
$$

4. (6 points) Find $\int_{e}^{e^{4}} \frac{d x}{x \sqrt{\ln x}}$.

Answer: Let $u=\ln x$. Then $d u=\frac{1}{x} d x$. When $x=e$, then $u=1$. When $x=e^{4}$, then $u=4$. The integral is equal to

$$
\int_{1}^{4} u^{-1 / 2} d u=\left.2 \sqrt{u}\right|_{1} ^{4}=2 \sqrt{4}-2 \sqrt{1}=2 .
$$

5. (7 points) Find $\int \sec ^{6} t d t$. Check your answer.

Answer: Save $\sec ^{2} t$. Convert the remaining $\sec ^{4} t$ to $\tan t$'s using $\tan ^{2} t+1=$ $\sec ^{2} t$. Let $u=\tan t$. It follows that $d u=\sec ^{2} t d t$. The original problem is equal to

$$
\begin{aligned}
\int\left(\tan ^{2} t+1\right)^{2} \sec ^{2} t d t & =\int\left(u^{2}+1\right)^{2} d u=\int\left(u^{4}+2 u^{2}+1\right) d u=\frac{u^{5}}{5}+\frac{2 u^{3}}{3}+u+C \\
& =\frac{\tan ^{5} t}{5}+\frac{2 \tan ^{3} t}{3}+\tan t+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
\tan ^{4} t \sec ^{2} t+2 \tan ^{2} t \sec ^{2} t+\sec ^{2} t & =\sec ^{2} t\left(\tan ^{4}+2 \tan ^{2} t+1\right)=\sec ^{2} t\left(\tan ^{2} t+1\right)^{2} \\
& =\sec ^{2} t \sec ^{4} t . \checkmark
\end{aligned}
$$

6. (7 points) Find $\int \tan ^{5} x d x$. Check your answer.

Answer: Save $\tan x$. Convert the remaining $\tan ^{4} x$ to $\sec x$'s using $\tan ^{2} x+1=$ $\sec ^{2} x$. Let $u=\sec x$. It follows that $d u=\sec x \tan x d x$. The original problem is equal to

$$
\begin{aligned}
& \int\left(\sec ^{2} x-1\right)^{2} \tan x d x=\int \frac{\left(u^{2}-1\right)^{2}}{u} d u=\int\left(u^{3}-2 u+\frac{1}{u}\right) d u \\
& =\frac{u^{4}}{4}-2 u^{2}+\ln |u|+C=\frac{\sec ^{4} x}{4}-\sec ^{2} x+\ln |\sec x|+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\sec ^{3} x \sec x \tan x-2 \sec x \sec x \tan x+\tan x=\tan x\left(\sec ^{4} x-2 \sec ^{2} x+1\right)= \\
\tan x\left(\sec ^{2} x-1\right)^{2}=\tan x \tan ^{4} x \cdot \checkmark
\end{gathered}
$$

7. (6 points) Find $\int \sqrt{5+4 x-x^{2}} d x$. Check your answer.

Answer: Complete the square $5+4 x-x^{2}=5+4-\left(x^{2}-4 x+4\right)=9-(x-2)^{2}$. We let $x-2=3 \sin \theta$. It follows that $d x=3 \cos \theta d \theta$ and $9-(x-2)^{2}=9-9 \sin ^{2} \theta=$ $9 \cos ^{2} \theta$. The original problem is

$$
\begin{array}{rl}
\int \sqrt{5+4 x-} x^{2} & d x=\int \sqrt{9-(x-2)^{2}} d x=9 \int \cos ^{2} \theta d \theta=\frac{9}{2} \int(1+\cos 2 \theta) d \theta \\
& =\frac{9}{2}(\theta+(1 / 2) \sin 2 \theta)+C=\frac{9}{2}(\theta+\sin \theta \cos \theta)+C \\
= & \frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{9-(x-2)^{2}}}{3}\right)+C \\
& =\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{5+4 x-x^{2}}}{3}\right)+C \\
& =\frac{9}{2} \arcsin \left(\frac{x-2}{3}\right)+\frac{1}{2}(x-2) \sqrt{5+4 x-x^{2}}+C
\end{array}
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
& \frac{9}{2} \frac{1 / 3}{\sqrt{1-\left(\frac{x-2}{3}\right)^{2}}}+(1 / 2)\left[(x-2) \frac{4-2 x}{2 \sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
&= \frac{9}{2} \frac{1 / 3}{\frac{1}{3} \sqrt{9-(x-2)^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
&= \frac{9}{2} \frac{1}{\sqrt{5+4 x-x^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
&=\frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[9-(x-2)^{2}+5+4 x-x^{2}\right] \\
&= \frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[2\left(5+4 x-x^{2}\right)\right]=\sqrt{5+4 x-x^{2}} .
\end{aligned}
$$

8. (6 points) Find $\int \sqrt{x^{2}+2 x} d x$. Check your answer.

Answer: We complete the square: $x^{2}+2 x=\left(x^{2}+2 x+1\right)-1=(x+1)^{2}-1$. Let $x+1=\sec \theta$. It follows that $(x+1)^{2}-1=\tan ^{2} \theta$ and $d x=\sec \theta \tan \theta d \theta$. The original problem is equal to

$$
\int \tan ^{2} \theta \sec \theta d \theta
$$

We use integration by parts. Let $u=\tan \theta$ and $d v=\sec \theta \tan \theta d \theta$. It follows that $d u=\sec ^{2} \theta d \theta$ and $v=\sec \theta$. So

$$
\begin{aligned}
\int \tan ^{2} \theta \sec \theta d \theta & =\sec \theta \tan \theta-\int \sec ^{3} \theta d \theta=\sec \theta \tan \theta-\int\left(\tan ^{2} \theta+1\right) \sec \theta d \theta \\
& =\sec \theta \tan \theta-\int \sec \theta d \theta-\int \tan ^{2} \theta \sec \theta d \theta
\end{aligned}
$$

Add $\int \tan ^{2} \theta \sec \theta d \theta$ to both sides to see that

$$
2 \int \tan ^{2} \theta \sec \theta d \theta=\sec \theta \tan \theta-\int \sec \theta d \theta
$$

So

$$
\begin{gathered}
\int \sqrt{x^{2}+2 x} d x=\int \tan ^{2} \theta \sec \theta d \theta=(1 / 2)\left[\sec \theta \tan \theta-\int \sec \theta d \theta\right] \\
=(1 / 2)[\sec \theta \tan \theta-\ln |\sec \theta+\tan \theta|]+C \\
=(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left|(x+1)+\sqrt{x^{2}+2 x}\right|\right]+C
\end{gathered}
$$

Check. The derivative of

$$
(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left[(x+1)+\sqrt{x^{2}+2 x}\right]\right.
$$

is

$$
\begin{aligned}
& (1 / 2)\left[\frac{(x+1)(2 x+2)}{2 \sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{2 x+2}{2 \sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right] \\
& =(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{x+1}{\sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right]
\end{aligned}
$$

$$
\begin{gathered}
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{\sqrt{x^{2}+2 x}+x+1}{\left[(x+1)+\sqrt{x^{2}+2 x}\right] \sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1}{\sqrt{x^{2}+2 x}}\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[(x+1)^{2}+x^{2}+2 x-1\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[2 x^{2}+4 x\right] \\
=\frac{1}{\sqrt{x^{2}+2 x}}\left[x^{2}+2 x\right]=\sqrt{x^{2}+2 x} .
\end{gathered}
$$

