Math 142, Exam 1, Fall 2016

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. Please make your work coherent, complete, and correct. Please CIRCLE your answer. Please CHECK your answer whenever possible.
The solutions will be posted later today. The quiz on Tuesday will be one problem from this exam.

No Calculators or Cell phones.

(1) Find $\int \cos ^{5} x d x$. Please check your answer.

Let $u=\sin x$; so $d u=\cos x d x$. Observe that

$$
\begin{aligned}
\int \cos ^{5} x d x= & \int \cos ^{4} x \cos x d x=\int\left(1-\cos ^{2} x\right)^{2} \cos x d x=\int\left(1-u^{2}\right)^{2} d u \\
= & \int\left(1-2 u^{2}+u^{4}\right) d u=u-2 u^{3} / 3+u^{5} / 5+C \\
& =\sin x-(2 / 3) \sin ^{3} x+(1 / 5) \sin ^{5} x+C .
\end{aligned}
$$

Check: The derivative of the proposed annswer is

$$
\begin{gathered}
\cos x-2 \sin ^{2} \cos x+\sin ^{4} x \cos x=\cos x\left(1-2 \sin ^{2} x+\sin ^{4} x\right)=\cos x\left(1-\sin ^{2} x\right)^{2} \\
=\cos x\left(\cos ^{2} x\right)^{2}=\cos ^{5} x . \checkmark
\end{gathered}
$$

(2) Find $\int \cos ^{4} x d x$.

Use $\cos ^{2} x=(1 / 2)(1+\cos 2 x)$. Observe that

$$
\begin{aligned}
\int \cos ^{4} x d x= & \int\left(\frac{1}{2}(1+\cos 2 x)\right)^{2} d x=\frac{1}{4} \int\left(1+2 \cos 2 x+\cos ^{2} 2 x\right) d x \\
& =\frac{1}{4} \int\left(1+2 \cos 2 x+\frac{1}{2}(1+\cos 4 x)\right) d x \\
& =\left(\frac{1}{4}\right)\left(x+\sin 2 x+\frac{x}{2}+\frac{1}{8} \sin 4 x\right)+C .
\end{aligned}
$$

(3) Find $\int \frac{d z}{e^{z}+e^{-z}}$. Please check your answer.

Let $u=e^{z}$; so $d u=e^{z} d z$. Observe that

$$
\int \frac{d z}{e^{z}+e^{-z}}=\int \frac{e^{z} d z}{e^{2 z}+1}=\int \frac{d u}{u^{2}+1}=\arctan u+C=\arctan e^{z}+C .
$$

Check: The derivative of the proposed answer is

$$
\frac{e^{z}}{e^{2 z}+1}=\frac{1}{e^{z}+e^{-z}} \cdot \checkmark
$$

(4) Find $\int e^{5 x} \sin x d x$. Please check your answer.

Use integration by parts. Let $u=e^{5 x}$ and $d v=\sin x d x$. Compute $d u=5 e^{5 x} d x$ and $v=-\cos x$. Observe that

$$
\int e^{5 x} \sin x d x=-e^{5 x} \cos x+5 \int e^{5 x} \cos x d x
$$

Use integration by parts again. Let $u=e^{5 x}$ and $d v=\cos x d x$. Compute $d u=$ $5 e^{5 x} d x$ and $v=\sin x$. Now we have

$$
\int e^{5 x} \sin x d x=-e^{5 x} \cos x+5\left(e^{5 x} \sin x-5 \int e^{5 x} \sin x d x\right)
$$

Add $25 \int e^{5 x} \sin x d x$ to both sides to obtain

$$
26 \int e^{5 x} \sin x d x=-e^{5 x} \cos x+5 e^{5 x} \sin x+C .
$$

Conclude that

$$
\begin{gathered}
\int e^{5 x} \sin x d x=(1 / 26)\left(-e^{5 x} \cos x+5 e^{5 x} \sin x\right)+K \\
=\left(e^{5 x} / 26\right)(-\cos x+5 \sin x)+K .
\end{gathered}
$$

Check: The derivative of the proposed answer is

$$
\left(e^{5 x} / 26\right)(\sin x+5 \cos x-5 \cos x+25 \sin x)=e^{5 x} \sin x . \checkmark
$$

(5) Find the area of the region bounded by $x+4=y^{2}$ and $y=x+2$. Please draw a meaningful picture.

See the other page.

