The purpose of these talks is to prove (some parts of) the following result.

Theorem. Let k be a field of positive characteristic p, P be the polynomial ring $k[x_1, \ldots, x_n]$, C be the homogeneous complete intersection ideal $C = (f_1, \ldots, f_m)$ in P and R be P/C. Let I be a homogeneous ideal in P with P/I a finite dimensional vector space over k. Suppose that the socle degrees of R/I are $d_1 \leq \cdots \leq d_\ell$ and that the socle degrees of R/I^pR are $D_1 \leq \cdots \leq D_L$. Then the following statements are equivalent:

1. $L = \ell$ and $D_i = pd_i - (p - 1)a(R)$ for all i, and
2. The ring R/I has finite projective dimension as an R-module.

Remark. In the present context $a(R)$ is $\sum |f_i| - \sum |x_i|$.

Proof of (1) \iff (2) when $C = 0.$ The ring P is regular. Every P-module has a finite resolution by free P-modules. Let

$$\mathbb{F} : 0 \to F_n \to F_{n-1} \to \cdots \to F_1 \to F_0$$

be the minimal homogeneous resolution of P/I by free P-modules, with $F_n = \bigoplus_i P(-b_i)$. There are two ingredients to the proof.

(A) The number of back twists in \mathbb{F} is exactly equal to the dimension of the socle of P/I; furthermore, b_i and $d_i = b_i + a(P)$.

(B) One obtains the minimal free resolution of P/I^p by applying the Frobenius functor to \mathbb{F}.

As soon as you buy (A) and (B), then the proof is complete. Ingredient (B) tells us that the back twists in the P-resolution of P/I are pb_i, with $1 \leq i \leq \ell$. Thus, by (A):

$$D_i = pb_i + a(P) = p(b_i + a(P)) - (p - 1)a(P) = pd_i - (p - 1)a(P).$$

A quick illustration. Let $P = k[x, y]$ and $I = (x^2, xy, y^2)$. The P-resolution of P/I is

$$0 \to P(-3)^2 \to P(-2)^3 \to P, \quad \begin{bmatrix} x & 0 \\ y & x \\ 0 & y \end{bmatrix}, \quad \begin{bmatrix} y^2 & -xy & x^2 \end{bmatrix}, P.$$
The resolution of $P/I^{[p]}$ is

$$0 \to P(-3p)^2 \xrightarrow{egin{bmatrix} x^p & 0 \\ y^p & x^p \\ 0 & y^p \end{bmatrix}} P(-2p)^3 \xrightarrow{egin{bmatrix} y^{2p} & -x^py^p & x^{2p} \end{bmatrix}} P.$$

We have $a(P) = -2$. We saw that x and y form a basis for the socle of P/I. So the socle degrees of P/I are $d_1 = 1 \leq d_2 = 1$. The back twists in the resolution of P/I are $b_1 = 3 \leq b_2 = 3$. We see that $3 - 2 = 1$, so $b_i + a(P) = d_i$. We also see that $x^{p-1}y^{2p-1}$ and $x^{2p-1}y^{p-1}$ are in the socle of $P/I^{[p]}$. One can show that $x^{p-1}y^{2p-1}$ and $x^{2p-1}y^{p-1}$ are a basis for the socle of $P/I^{[p]}$. So the socle degrees of $P/I^{[p]}$ are $D_1 = 3p - 2 \leq D_2 = 3p - 2$; the back twists in the resolution of $P/I^{[p]}$ are $B_1 = 3p \leq B_2 = 3p$; and $a(P)$ is still -2. We have $D_i = B_i + a(P)$ and also $D_i = pd_i - (p - 1)a(P)$, for both i.

Ingredient (B), in the present form, is due to Kunz (1969) – this is the paper that got commutative algebraists (especially Peskine, Spzio, Hochster) using Frobenius methods. One could also think of this assertion as an application of “What makes a complex exact?” (John Olmo lectured on this last Fall). The complex \mathbb{F} is a resolution, so the ranks of its matrices behave correctly and the grade of the ideals of matrix minors grow correctly. If one raises each entry of each matrix to the pth power, then the ranks of the new matrices are the same as the ranks of the old matrices (since $\det M^{[p]} = (\det M)^p$ because the characteristic of the ring is p), and the grade of the ideals of minors also remains unchanged!

I will give two explanations for ingredient (A). The quick argument is that one may commute $\text{Tor}_n^P(P/I, k)$ using either coordinate. If one resolves P/I, then applies $_ \otimes_P k$, and then computes homology, then one sees that

$$\text{Tor}_n^P(P/I, k) = \bigoplus_i k(-b_i).$$

In other words, the generators of Tor have degrees $b_1 \leq \ldots$. On the other hand, if one resolves k, then applies $P/I \otimes_P _ \otimes_P k$, and then computes homology, then one sees that

$$\text{Tor}_n^P(P/I, k) = \bigoplus_i \frac{I: \mathfrak{m}^i}{I}(a(P)).$$

In other words, the the generators of Tor have degrees $d_1 - a(P), \ldots$ (where the socle degrees of P/I are d_1, \ldots). So $d_i = b_i + a(P)$ as claimed.
My second argument is exactly the same as my first, except, instead of stating the abstract result that Tor may computed in either coordinate, I reprove this result, giving a construction which associates an element of the socle of P/I to each basis vector at the back of the resolution of P/I. The constructive argument takes longer, but shows what is really happening. Let \mathbb{F} be a resolution of P/I, as above. Let \mathbb{G} be the Koszul complex which resolves k. One can directly show that there is an isomorphism

\[(*) \quad H_n(\mathbb{F} \otimes k) \cong H_n(\text{Tot}(\mathbb{F} \otimes \mathbb{G})) \cong H_n(P/I \otimes \mathbb{G}).\]

Anyway, I think that the best way to convey the idea of $(*)$ is to work out the example where $I = (x^2, xy, y^2)$. In this case, \mathbb{F} is

\[
\begin{align*}
0 \to P(-3)^2 & \to P(-2)^3 & \to P, \\
& \mathbb{F}_2 & \mathbb{F}_1 & \mathbb{F}_0 \\
& f_2 = \begin{bmatrix} x & 0 \\ y & x \\ 0 & y \end{bmatrix} & f_1 = \begin{bmatrix} y^2 & -xy & x^2 \end{bmatrix}
\end{align*}
\]

\mathbb{G} is

\[
\begin{align*}
0 \to P(-2) & \to P(-1)^2 & \to P, \\
& \mathbb{G}_2 & \mathbb{G}_1 & \mathbb{G}_0 \\
& g_2 = \begin{bmatrix} y \\ -x \end{bmatrix} & g_1 = \begin{bmatrix} x & y \end{bmatrix}
\end{align*}
\]
and $\mathbb{F} \otimes \mathbb{G}$ is

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\downarrow & & & \\
0 & \overset{f_2 \otimes 1}{\longrightarrow} & F_1 \otimes G_2 & \overset{f_1 \otimes 1}{\longrightarrow} F_0 \otimes G_2 \\
\downarrow 1 \otimes g_2 & & \downarrow 1 \otimes g_2 & \downarrow 1 \otimes g_2 \\
0 & \overset{f_2 \otimes 1}{\longrightarrow} & F_1 \otimes G_1 & \overset{f_1 \otimes 1}{\longrightarrow} F_0 \otimes G_1 \\
\downarrow 1 \otimes g_1 & & \downarrow 1 \otimes g_1 & \downarrow 1 \otimes g_1 \\
0 & \overset{f_2 \otimes 1}{\longrightarrow} & F_1 \otimes G_0 & \overset{f_1 \otimes 1}{\longrightarrow} F_0 \otimes G_0.
\end{array}
\]

Start with $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes 1$ in $F_2 \otimes G_0$ in the lower left hand corner. We see that this element represents an element of the homology of $H_2(\mathbb{F} \otimes k)$. One can extend this element to get an element of the homology of $H_2(\text{Tot}(\mathbb{F} \otimes \mathbb{G}))$:

\[
1 \otimes y
\]

\[
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} \longrightarrow 1 \otimes \begin{bmatrix} y^2 \\ -xy \end{bmatrix}
\]

\[
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}
\]

The indicated element of $H_2(\text{Tot}(\mathbb{F} \otimes \mathbb{G}))$ gives rise to the element y of the socle of P/I. To answer the question that our freshman ask: "Yes, it always works like that." We can use the idea of the snaky game to prove both isomorphisms in (*).

Now we work on (1) \implies (2). We want to prove that $\text{pd}_R(R/I R) < \infty$. We apply the Theorem of Avramov and Claudia Miller (see the last seminar talk given by John Olmo last semester.) It suffices to prove that $\text{Tor}_R^1(R/I R, \mathcal{C}) = 0$. In other words, it suffices to show that if

\[
\begin{array}{c}
R^{b_2} \overset{d_2}{\longrightarrow} R^{b_1} \overset{d_1}{\longrightarrow} R \rightarrow R/I \rightarrow 0
\end{array}
\]

is exact

\[
\begin{array}{c}
R^{b_2} \overset{d_2^{[p]}}{\longrightarrow} R^{b_1} \overset{d_1^{[p]}}{\longrightarrow} R \rightarrow R/\mathcal{I}^{[p]} \rightarrow 0
\end{array}
\]

is exact.
In other words, it suffices to show that

\[(***) \quad I^{[p]} \cap C = (I \cap C)^{[p]} + I^{[p]}C. \]

I will show that (***) implies (**). (This is a rather grubby calculation. I do it to show that our goal is very concrete! One can read the calculation backwards to show that (**) implies (***)).

I make my calculation at the \(P \)-level. Let \(a_1, \ldots, a_{b_1} \) generate \(I \) in \(P \); so,

\[d_1 = [a_1 \ldots a_{b_1}] \]

and

\[d_1^{[p]} = [a_1^p \ldots a_{b_1}^p]. \]

We think of \(d_2 \) as having two pieces:

\[d_2 = [d'_2 \quad d''_2] \]

where

\[P^{b_2'} \xrightarrow{d'_2} P^{b_1} \xrightarrow{d_1} P \]

is exact (and \(d''_2 \) is all of the extra columns that describe elements of \(I \) which are also in \(C \).) Recall that Kunz’s Theorem (ingredient (B) of the other direction) tells us that

\[P^{b_2'} \xrightarrow{(d'_2)^{[p]}} P^{b_1} \xrightarrow{d^{[p]}_1} P \]

is exact.

Suppose \(v \) is in \(P^{b_1} \) with \(d_1^{[p]}(v) \in C \). In other words,

\[d_1^{[p]}(v) \in I^{[p]} \cap C = (I \cap C)^{[p]} + I^{[p]}C. \]

So, there exist \(s_1, \ldots, s_t \in I \cap C; \alpha_1, \ldots, \alpha_t \) in \(P \); and \(c_1, \ldots c_{b_1} \) in \(C \) so that

\[d_1^{[p]}(v) = \sum_{i=1}^{t} \alpha_i s_i^p + \sum_{i=1}^{b_1} a_i^p c_i. \]

Of course, there exists \(v_i \in P^{b_1} \) with \(d_1(v_i) = s_i \) (and therefore also \(d_1^{[p]} v_i^{[p]} = s_i^p \)).

So,

\[d_1^{[p]}(v) = d_1^{[p]} \left(\sum_{i=1}^{t} \alpha_i v_i^{[p]} + \begin{bmatrix} c_1 \\ \vdots \\ c_{b_1} \end{bmatrix} \right). \]
So,

\[v - \sum_{i=1}^{t} \alpha_i v_i[p] = \begin{bmatrix} c_1 \\ \vdots \\ c_{b_1} \end{bmatrix} \]

is killed by \(d_1[p] \); hence is in the image of \((d_2')[p] \). Finally, \(d_1(v_i) = s_i \in I \cap C \), so \(v_i = d_2''(w_i) \) for some \(w_i \); hence, \(v_i[p] = (d_2'')[p](w_i[p]) \). Thus,

\[v \in \text{im} d_2'[p] + CP^{b_1}, \]

as desired.

To be continued ...