Abstract

In 2005 Cameron and Walker classified all finite simple graphs \(G \) such that the matching number of \(G, m(G) \), is equal to the induced matching number of \(G, i(G) \). We call such graphs Cameron-Walker graphs. This class of graphs is of particular interest as these graph theoretic invariants provide upper and lower bounds for the Castelnuovo-Mumford regularity of the ring \(R/I(G) \), where \(R \) is the polynomial ring in \(|V(G)| \) variables and \(I(G) \) is the edge ideal of \(G \). Here we explore other algebraic properties of the edge ideals of Cameron-Walker graphs such as (sequentially) Cohen-Macaulayness, (pure) shellability, and (pure) vertex decomposability.

Introduction and Preliminary Definitions

Let \(G \) be a finite simple graph on vertex set \([n] := \{1, \ldots, n\} \) with edge set \(E(G) \).

Definition. The edge ideal of \(G \) is then defined to be the ideal
\[
I(G) = \langle x_{ij} \mid (i, j) \in E(G) \rangle \subseteq \mathbb{K}[x_1, \ldots, x_n]
\]
where \(\mathbb{K} \) is a field.

Since \(I(G) \) is a square-free monomial ideal, we can realize \(I(G) \) as the Stanley-Reiser ideal of the independence complex of \(G \), denoted \(\Delta(G) \).

Definition. Let \(G \) be a finite simple graph on vertex set \([n] := \{1, \ldots, n\} \) with edge set \(E(G) \).

1. A set \(I \subseteq \{1, \ldots, n\} \) is independent in \(G \) if \((i, j) \notin E(G) \) for all \(i, j \in I \).
2. A set \(I \subseteq \{1, \ldots, n\} \) is a maximal independent set in \(G \).
3. A set \(I \subseteq \{1, \ldots, n\} \) is a minimal independent set in \(G \).

Definition. A simplicial complex \(\Delta \) is shellable if all of its facets (maximal faces) can be listed \(F_1, \ldots, F_t \) in such a way that
\[
\bigcap_{j=1}^{t} F_j = \bigcup_{j=1}^{t} F_j
\]
is a pure simplicial complex of dimension \(d(F_i) - 1 \) for all \(1 < i \leq t \).

Definition. A module \(M \) is sequentially Cohen-Macaulay if there exists a filtration of \(M \)
\[
0 = M_0 \subseteq M_1 \subseteq \cdots \subseteq M_{i-1} \subseteq M_{i} \subseteq \cdots \subseteq M_t = M
\]
such that \(M_i/M_{i-1} \) is Cohen-Macaulay for all \(1 \leq i \leq r \).

What is Known

bipartite

We say a graph \(G \) is bipartite if there is a partition of the vertex set \(V(G) = \{a_i \cup [m]\} \) such that for all edges \((i, j) \in E(G) \) we have \(i \in [n] \) and \(j \in [m] \).

- [Ravinda; Villarreal 2007] Unmixed bipartite graphs are Cohen-Macaulay.
- [Van Tuyl 2009] Sequentially Cohen-Macaulay bipartite graphs are vertex decomposable, decomposable.

chordal

We say a graph \(G \) is chordal if every cycle of length at least 4 has a chord.

- [Francisco-Van Tuyl 2007] Chordal graphs are sequentially Cohen-Macaulay.
- [Dochtermann-Enstrom 2009] Chordal graphs are vertex decomposable.
- [Woodroofe 2006] Graphs with no chordless cycle of length other than 3 or 5 are vertex decomposable.

Cameron-Walker Graphs

Definition. A set \(M \subseteq E(G) \) is said to be a matching if for all \(e, e' \in E(G) \) with \(e \neq e' \), we have \(e \cap e' = \emptyset \). The matching number, denoted \(m(G) \), is defined to be
\[
m(G) := \max \{ |M| \mid M \text{ is a matching in } G \}.
\]

Definition. A set \(M \subseteq E(G) \) is said to be an induced matching if for all \(e, e' \in E(G) \) with \(e \neq e' \), there does not exist \(f \in E(G) \) such that \(e \cup f \neq \emptyset \) and \(e' \cup f \neq \emptyset \). The induced matching number, denoted \(i(G) \), is defined to be
\[
i(G) := \max \{ |M| \mid M \text{ is an induced matching in } G \}.
\]

Example. For \(G \) in the first example, \(\{2, 3, 4, 5\} \) is a matching but not an induced matching and we have \(m(G) = 2, i(G) = 1 \).

These graph theoretic invariants are of particular interest to algebraists as they provide bounds for the Castelnuovo-Mumford regularity of \(S/I(G) \).

Theorem. [Katzman '05, Ha-Van Tuyl '07] Given a finite simple graph \(G \) with edge ideal \(I(G) \subseteq R \subseteq \mathbb{K} \), we have the following inequality
\[
i(G) \leq \text{reg } S/I(G) \leq m(G).
\]

Theorem. [Cameron-Walker '05] Suppose \(G \) is a finite simple graph such that \(i(G) = m(G) \). Then \(G \) is one of the following:
1. the empty graph, i.e. \(E(G) = \emptyset \).
2. \(K_{n,m} \) is comprised of a bipartite graph on vertex set \(\{a_i \cup [m]\} \) such that for all \(i \in [n] \) there is at least one leaf edge connected to \(i \) and for all \(j \in [m] \) there may be a pendant triangle attached to \(j \).

Example. The following is an example of a Cameron-Walker graph.

Example. A Cameron-Macaulay Cameron-Walker graph.

It turns out we need no requirements on the number of leaves, pendant triangles, or even the structure of the supporting bipartite graph of a Cameron-Walker graph to obtain vertex decomposability.

Theorem. [Hibi-Higashitani-Kimura-O'Keefe '13] Every Cameron-Walker graph is vertex decomposable.

References