
THE SYZYGIES OF THE IDEAL (xN
1 ,x

N
2 ,x

N
3 ,x

N
4 ) IN THE

HYPERSURFACE RING DEFINED BY xn
1 + xn

2 + xn
3 + xn

4 OVER ANY
FIELD.

ANDREW R. KUSTIN, REBECCA R.G., AND ADELA VRACIU

ABSTRACT. Let kkk be a field of characteristic zero, and nnn, ddd, and rrr be non-negative
integers with 1≤ rrr ≤ nnn−1. Let N be the integer dddnnn+rrr, P be the polynomial ring
kkk[x1,x2,x3,x4], fnnn be the polynomial xnnn

1 + xnnn
2 + xnnn

3 + xnnn
4 in P, Cddd,nnn,rrr be the ideal

(xN
1 ,x

N
2 ,x

N
3 ,x

N
4 ) of P, P̄nnn be the hypersurface ring P/( fnnn), Qddd,nnn,rrr be the quotient

ring P̄nnn/Cddd,nnn,rrrP̄nnn and Ω3
ddd,nnn,rrr be the third syzygy module of Qddd,nnn,rrr as a P̄nnn-module.

We prove that Ω3
ddd,nnn,rrr is isomorphic to the direct sum of 2ddd +1 copies of Ω3

0,nnn,rrr.

1. INTRODUCTION

One often studies an ideal III in a commutative ring RRR by computing invariants of
the quotient ring which is defined by some sort of power of III. Sometimes one stud-
ies ordinary powers of III, see, for example, [8, 18]; sometimes one studies symbolic
powers [9, 16], sometimes one studies Frobenius powers [19, 26]. We consider
bracket powers; indeed we have found that projects which begin as projects about
Frobenius powers often end up being projects about bracket powers [24, 21].

For an arbitrary graded algebra RRR, over an arbitrary field kkk, with maximal homo-
geneous ideal m = (x1, . . . ,xm), it is very natural to ask how the bracket powers,
m[N] = (xN

1 , . . . ,x
N
m), of m are related. In particular, how is the resolution of RRR/m[N]

by free RRR-modules related to the resolution of RRR/m[qN] for various exponents N and
qN?

We focus on hypersurfaces of the form RRR = P/( f ), where P is a polynomial ring
over a field, and f is a homogeneous polynomial in P. The most interesting feature
of the RRR-resolution of RRR/III[N]RRR is the infinite tail of the resolution, which is a matrix
factorization of f , see [10].

The situation has been fairly seriously studied when P = kkk[x,y,z], m is the max-
imal ideal (x,y,z), kkk is a field of characteristic p, f is a homogeneous polynomial
of P, and RRR is the hypersurface ring P̄ = P/( f ). If f = xnnn + ynnn + znnn, then the Betti
numbers of P̄/m[q]P̄ are calculated in [24] and the resolution of P̄/m[q]P̄ is given in
[21]. If f is a general homogeneous form of P, then the Betti numbers of P̄/m[q]P̄
are calculated in [25]. In the present paper, P is a polynomial ring with four vari-
ables.
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Data 1.1. Let kkk be a field, and nnn, ddd, and rrr be non-negative integers with

(1.1.1) 1≤ rrr ≤ nnn−1.

(Usually ddd is also positive.) Once ddd, nnn, and rrr have been chosen, then

N = dddnnn+rrr.

Let P be the polynomial ring P = kkk[x1,x2,x3,x4], fnnn be the polynomial

fnnn = xnnn
1 + xnnn

2 + xnnn
3 + xnnn

4

in P, P̄nnn be the hypersurface ring P/( fnnn), Cddd,nnn,rrr be the ideal (xN
1 ,x

N
2 ,x

N
3 ,x

N
4 ) of P,

and Qddd,nnn,rrr be the quotient ring

(1.1.2) Qddd,nnn,rrr = P̄nnn/Cddd,nnn,rrrP̄nnn.

Let Mnnn be the Abelian group Z⊕ ( Z
nnnZ)

4. The polynomial ring P is Mnnn-graded,
where the degree of the monomial xa1

1 xa2
2 xa3

3 xa4
4 is

(a1 +a2 +a3 +a4, ā1, ā2, ā3, ā4),

with āi equal to the image of ai in Z
nnnZ . The polynomial fnnn and the ideal Cddd,nnn,rrr are

both homogeneous with respect to the Mnnn-grading on P. Let Gddd,nnn,rrr be the minimal
Mnnn-homogeneous resolution of Qddd,nnn,rrr by free P̄nnn-modules.

If ddd = 0, then
( fnnn)⊆ (xrrr

1,x
rrr
2,x

rrr
3,x

rrr
4)

are nested complete intersection ideals, C0,nnn,rrrP̄nnn is a quasi-complete intersection
ideal of P̄nnn, in the sense of [1], and G0,nnn,rrr is the two-step Tate complex [23, 11].
Indeed, G0,nnn,rrr looks like

(1.1.3) · · · B̄−→ P̄8
nnn

Ā−→ P̄8
nnn

B̄−→ P̄8
nnn

Ā−→ P̄8
nnn −→ P̄7

nnn −→ P̄4
nnn −→ P̄nnn,

where matrices A and B with entries in P are given in Table 1, and Ā and B̄ are the
images of A and B in P̄nnn. The matrices A and B form a matrix factorization of fnnn in
the sense that AB and BA both equal fnnn times the 8×8 identity matrix over P. Some
further discussion about the case ddd = 0 may be found in Section 11.

If ddd is positive, then fnnn is not in the ideal Cddd,nnn,rrr and there is no two-step Tate
complex associated to the P̄nnn-module Qddd,nnn,rrr. Nonetheless, when the characteristic
of kkk is zero, the multi-graded Betti numbers in the minimal resolution of Gddd,nnn,rrr by
free P̄-modules have been calculated in [22]. (The calculation is summarized in
Section 4.) This calculation shows that the resolution Gddd,nnn,rrr looks like

(1.1.4) · · · → P̄16ddd+8
nnn

ḡ5−→ P̄16ddd+8
nnn

ḡ4−→ P̄16ddd+8
nnn

ḡ3−→ P̄8ddd+7
nnn

ḡ2−→ P̄4
nnn

ḡ1−→ P̄nnn,

where the form of the matrices g4 and g5 is given in Table 2. (As before gi is a
matrix with entries from P and ḡi is the image of gi in P̄nnn.) The matrices Mi j and
Ni j are (2ddd +1)× (2ddd +1) invertible matrices of constants.

The similarity between the form of the matrices in Table 1 and the matrices in
Table 2 lead us to make the following conjecture.

Conjecture 1.2. If the characteristic of kkk is zero, then the infinite tail of Gddd,nnn,rrr is
isomorphic to the direct sum of 2ddd +1 copies of the infinite tail of G0,nnn,rrr.
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A =



xrrr
1 0 0 0 xnnn−rrr

2 −xnnn−rrr
3 xnnn−rrr

4 0
−xrrr

2 0 xnnn−rrr
4 −xnnn−rrr

3 xnnn−rrr
1 0 0 0

xrrr
3 xnnn−rrr

4 0 −xnnn−rrr
2 0 xnnn−rrr

1 0 0
−xrrr

4 xnnn−rrr
3 −xnnn−rrr

2 0 0 0 xnnn−rrr
1 0

0 −xrrr
2 −xrrr

3 −xrrr
4 0 0 0 xnnn−rrr

1
0 xrrr

1 0 0 0 −xrrr
4 −xrrr

3 xnnn−rrr
2

0 0 xrrr
1 0 −xrrr

4 0 xrrr
2 xnnn−rrr

3
0 0 0 xrrr

1 xrrr
3 xrrr

2 0 xnnn−rrr
4


and

B =



xnnn−rrr
1 −xnnn−rrr

2 xnnn−rrr
3 −xnnn−rrr

4 0 0 0 0
0 0 xrrr

4 xrrr
3 −xnnn−rrr

2 xnnn−rrr
1 0 0

0 xrrr
4 0 −xrrr

2 −xnnn−rrr
3 0 xnnn−rrr

1 0
0 −xrrr

3 −xrrr
2 0 −xnnn−rrr

4 0 0 xnnn−rrr
1

xrrr
2 xrrr

1 0 0 0 0 −xnnn−rrr
4 xnnn−rrr

3
−xrrr

3 0 xrrr
1 0 0 −xnnn−rrr

4 0 xnnn−rrr
2

xrrr
4 0 0 xrrr

1 0 −xnnn−rrr
3 xnnn−rrr

2 0
0 0 0 0 xrrr

1 xrrr
2 xrrr

3 xrrr
4


TABLE 1. The matrices A and B for the resolution of (1.1.3).

The matrix g4 has the form
xrrr

1M11 0 0 0 xnnn−rrr
2 M15 −xnnn−rrr

3 M16 xnnn−rrr
4 M17 0

−xrrr
2M21 0 xnnn−rrr

4 M23 −xnnn−rrr
3 M24 xnnn−rrr

1 M25 0 0 0
xrrr

3M31 xnnn−rrr
4 M32 0 −xnnn−rrr

2 M34 0 xnnn−rrr
1 M36 0 0

−xrrr
4M41 xnnn−rrr

3 M42 −xnnn−rrr
2 M43 0 0 0 xnnn−rrr

1 M47 0
0 −xrrr

2M52 −xrrr
3M53 −xrrr

4M54 0 0 0 xnnn−rrr
1 M58

0 xrrr
1M62 0 0 0 −xrrr

4M66 −xrrr
3M67 xnnn−rrr

2 M68
0 0 xrrr

1M73 0 −xrrr
4M75 0 xrrr

2M77 xnnn−rrr
3 M78

0 0 0 xrrr
1M84 xrrr

3M85 xrrr
2M86 0 xnnn−rrr

4 M88

and the matrix g5 has the form
xnnn−rrr

1 N11 −xnnn−rrr
2 N12 xnnn−rrr

3 N13 −xnnn−rrr
4 N14 0 0 0 0

0 0 xrrr
4N23 xrrr

3N24 −xnnn−rrr
2 N25 xnnn−rrr

1 N26 0 0
0 xrrr

4N32 0 −xrrr
2N34 −xnnn−rrr

3 N35 0 xnnn−rrr
1 N37 0

0 −xrrr
3N42 −xrrr

2N43 0 −xnnn−rrr
4 N45 0 0 xnnn−rrr

1 N48
xrrr

2N51 xrrr
1N52 0 0 0 0 −xnnn−rrr

4 N57 xnnn−rrr
3 N58

−xrrr
3N61 0 xrrr

1N63 0 0 −xnnn−rrr
4 N66 0 xnnn−rrr

2 N68
xrrr

4N71 0 0 xrrr
1N74 0 −xnnn−rrr

3 N76 xnnn−rrr
2 N77 0

0 0 0 0 xrrr
1N85 xrrr

2N86 xrrr
3N87 xrrr

4N88

TABLE 2. The matrices g4 and g5 for the resolution of (1.1.4). Each
matrix Mi j and Ni j is a (2ddd +1)× (2ddd +1) invertible matrix of con-
stants.

Possibly it is helpful to observe that Conjecture 1.2 is equivalent to conjecturing
that the matrix factorization of fnnn associated to Cddd,nnn,rrr is given in Table 3, where
there are 2ddd+1 copies of A and B on the main diagonal. Another alternate phrasing
of Conjecture 1.2 involves the third syzygy module, Ω3

ddd,nnn,rrr, of Qddd,nnn,rrr as a P̄nnn-module.



4 A. R. KUSTIN, R. R.G., AND A. VRACIU

A 0 0

0 . . . 0
0 0 A

 and

B 0 0

0 . . . 0
0 0 B


TABLE 3. An alternate version of Conjecture 1.2 is that the matrix
factorization of fnnn associated to Cddd,nnn,rrr is given above, where A and
B are the matrices of Table 1 and there are 2ddd +1 copies of A and B
on the main diagonal.

Conjecture 1.2 is equivalent to the assertion that Ω3
ddd,nnn,rrr is isomorphic to the direct

sum of 2ddd +1 copies of Ω3
0,nnn,rrr,.

We establish Conjecture 1.2 in Corollary 10.2.
In order to prove Conjecture 1.2, one “need only” find bases so that, in the new

bases, all of the invertible matrices Mi j and Ni j from g4 and g5 in Table 2 simulta-
neously become the identity matrix. We carried out this calculation when 1≤ ddd ≤ 2
(with nnn and rrr arbitrary satisfying (1.1.1)). That is, we applied the procedure of [20];
found explicit matrices Mi j and Ni j; and simultaneously inverted all Mi j and Ni j.
We had hoped that the explicit calculations would show us the “special bases” for
the free modules in Gddd,nnn,rrr that give rise to

(1.2.1) Mi j = Ni j = I2ddd+1,

where Im is the m×m identity matrix. Alas, we learned that there are no special
bases. One can choose any basis for any one of the 16 indicated summands of the
free modules in position 4 or 5 of Gddd,nnn,rrr and then there is a unique choice of basis
for each of the other 15 indicated summands which give rise to (1.2.1).

In other words, Conjecture 1.2 is a conceptual problem and not a calculational
problem.We move to a “Universal resolution” which maps to all of the Gddd,nnn,rrr and
which is known to have (approximately) the desired form. We adopt the following
setting for this “universal resolution”.

Data 1.3. Let kkk be a field, P be the polynomial ring

P= kkk[y1,y2,y3,y4,w1,w2,w3,w4],

f be the polynomial
f= y1w1 + y2w2 + y3w3 + y4w4

in P, and P̄ be the hypersurface ring P/(f). For each non-negative integer ddd, let Cddd
be the ideal (yddd+1

1 wddd
1, yddd+1

2 wddd
2, yddd+1

3 wddd
3, yddd+1

4 wddd
4) of P, and Qddd be the quotient ring

Qddd = P̄/CdddP̄.

Let M be the Abelian group Z6. The polynomial ring P is M-graded, where the
degree of the monomial ya1

1 ya2
2 ya3

3 ya4
4 wb1

1 wb2
2 wb3

3 wb4
4 is

(a1 +a2 +a3 +a4,b1 +b2 +b3 +b3 +b4,a1−b1,a2−b2,a3−b3,a4−b4).

The polynomial f and the ideal Cddd are both homogeneous with respect to the M-
grading on P. Let Gddd be the minimal M-homogeneous resolution of Qddd by free
P̄-modules.
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The set up of Data 1.3 is relevant for three reasons. First of all, for each pair
(nnn,rrr), which satisfies (1.1.1), there is a ring homomorphism ∆̄nnn,rrr : P̄→ P̄nnn and a
homomorphism of Abelian groups αnnn,rrr : M→Mnnn such that

1.4. Gddd⊗P̄ P̄nnn is a resolution of Qddd,nnn,rrr by free P̄nnn-modules (see Theorem 7.5), and

1.5. if θ is an M-homogeneous element of P̄ of multi-degree m, then ∆̄nnn,rrr(θ) is
a homogeneous element of P̄nnn, in the Mnnn-grading, of multi-degree αnnn,rrr(m) (see
Remark 5.3.(b)).

Also, the polynomial f is a quadratic form in the polynomial ring P; consequently,

1.6. there are at most two isomorphism classes of non-free indecomposable maxi-
mal Cohen-Macaulay (MCM) P̄-modules.

The result 1.6 is explicitly established, over any field, in [6, Prop. 3.1]. (The
MCM modules over the particular ring P̄ are also discussed in [7, Remark 2.5.4].
Indeed, the classification of MCM-modules over P̄ may be deduced from Knörrer
periodicity [17].) At any rate,

fI8 = AB and fI8 =BA,

for A and B as given in Table 4, and every non-free indecomposable MCM P̄-
module is isomorphic to Im Ā or ImB̄. The fourth syzygy, S4

ddd , of the P̄-module
Qd is a MCM P̄-module; consequently,

(1.6.1) S4
ddd
∼= (Im Ā)a⊕ (ImB̄)b⊕ P̄c,

for some non-negative integers a, b, and c.
Apply 1.4 to see that ∆̄nnn,rrr(Gddd) = Gddd,nnn,rrr. The resolution Gddd,nnn,rrr is homogeneous

with respect to the Mnnn-grading; the multi-homogeneous Betti numbers are given
in [22]. The Mnnn-grading on Gddd,nnn,rrr may be pulled back along αnnn,rrr to obtain the
M-grading on Gddd . (It is clear that any given αnnn,rrr has a large kernel; however it is
equally clear that ∩kerαnnn,rrr = 0.)

(1.6.1) is that
S4

ddd
∼= (Im Ā)2ddd+1.

The proof of Conjecture 1.2 is then complete because ∆̄nnn,rrr(Ā) is equal to the matrix
A of Table 1. (A few tricks involving MCM modules establishes that the third
syzygy, S3

ddd , of Qd satisfies S3
ddd
∼= (ImB̄)2ddd+1.)

The P̄-modules Im Ā and ImB̄ were called “maximally generated maximal Co-
hen Macaulay” modules by Ulrich in [30]. They were called “linear maximal
Cohen-Macaulay modules” by Backelin, Herzog, and Sanders in [2]. At present
they are called Ulrich modules.

The main results in this paper take place in characteristic zero. Indeed, we use the
multi-graded Betti numbers in the minimal resolution of Gddd,nnn,rrr by free P̄-modules
which were calculated in [22]. The calculation in [22] is largely a Hilbert series cal-
culation and this calculation often appeals to Stanley’s theorem [28, Thm. 2.4] that
every Artinian monomial complete intersection over a polynomial ring kkk[x1, . . . ,xn],
where kkk is a field of characteristic zero, has the strong Lefschetz property.
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A=



y1 0 0 0 w2 −w3 w4 0
−y2 0 w4 −w3 w1 0 0 0
y3 w4 0 −w2 0 w1 0 0
−y4 w3 −w2 0 0 0 w1 0

0 −y2 −y3 −y4 0 0 0 w1
0 y1 0 0 0 −y4 −y3 w2
0 0 y1 0 −y4 0 y2 w3
0 0 0 y1 y3 y2 0 w4



B=



w1 −w2 w3 −w4 0 0 0 0
0 0 y4 y3 −w2 w1 0 0
0 y4 0 −y2 −w3 0 w1 0
0 −y3 −y2 0 −w4 0 0 w1
y2 y1 0 0 0 0 −w4 w3
−y3 0 y1 0 0 −w4 0 w2
y4 0 0 y1 0 −w3 w2 0
0 0 0 0 y1 y2 y3 y4


TABLE 4. The matrices A and B give a matrix factorization of fI8.
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2. NOTATION, CONVENTIONS, AND PRELIMINARY RESULTS.

2.1. Let R be a Noetherian ring, I be a proper ideal of R, and M be a non-zero
finitely generated R-module.
(a) The grade of I is the length of a maximal regular sequence on R which is con-

tained in I. (If R is Cohen-Macaulay, then the grade of I is equal to the height
of I.)
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(b) The R-module M is called perfect if the grade of the annihilator of M (denoted
annR M) is equal to the projective dimension of M (denoted pdR M). The in-
equality

grade(annR M)≤ pdR M

holds automatically.
(c) Perfect modules are grade unmixed; see for example [4, Prop. 16.17]. In partic-

ular, if R is Cohen-Macaulay and M is perfect, then the set of associated prime
ideals of M is equal to the set of prime ideals which are minimal in the support
of M.

(d) If R is a polynomial ring over a field and M is a finitely generated graded R-
module, then M is a perfect R-module if and only if M is a Cohen-Macaulay
R-module. (This is not the full story. For more information, see, for example,
[4, Prop. 16.19] or [3, Thm. 2.1.5].)

(e) The ideal I in R is called a perfect ideal if R/I is a perfect R-module.

2.2. A complex C : · · · → C2
c2−→ C1

c1−→ C0 → 0 of R-modules is called acyclic if
H j(C ) = 0 for 1 ≤ j. If C is an acyclic complex, then C resolves H0(C ). If R is
M-homogeneous for some Abelian group M, with R0 a field, and C is a minimal
M -homogeneous resolution of H0(C ), then the image of ci is the ith syzygy of the
R-module H0(C ).

2.3. If φ is a homomorphism, then we write Imφ for the image of φ.

Notation 2.4. If j ∈ {1,2,3,4}, then let

z j = (#1,#2,#3,#4) ∈ Z4,

with

#i =

{
0 if i 6= j
1 if i = j.

If a is an integer, let a represent the four tuple a = (a,a,a,a); in particular 0 =
(0,0,0,0), 1 = (1,1,1,1), and rrr = (rrr,rrr,rrr,rrr).

Once nnn is chosen, we use the following notation to compactify the Mnnn-degree of
a monomial from P.

Notation 2.5. Adopt the data of 1.1. Consider the homomorphism of Abelian
groups

Z5→Mnnn,

which is given by

(k,ρ1,ρ2,ρ3,ρ4) 7→ m(k,ρ1,ρ2,ρ3,ρ4),

where

m(k,ρ1,ρ2,ρ3,ρ4) = (knnn+ρ1 +ρ2 +ρ3 +ρ4, ρ̄1, ρ̄2, ρ̄3, ρ̄4) in Mnnn.
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3. THE MINIMAL Mnnn-HOMOGENEOUS RESOLUTION OF rrr-RESTRICTED IDEALS.

Recall the data of 1.1. In this section we observe that if an Mnnn-homogeneous
P-module X is “rrr-restricted” (see Definition 3.1), then every module in the minimal
Mn-homogeneous resolution of X by free P-modules is also “rrr-restricted”. We use
this idea in Section 6 when we deform the P-module P/(xN

1 ,x
N
2 ,x

N
3 ,x

N
4 , fnnn) into the

P-module
P/(yddd+1

1 wddd
1,y

ddd+1
2 wddd

2,y
ddd+1
3 wddd

3,y
ddd+1
4 wddd

4, f),

in the language of Data 1.3.

Definition 3.1. Retain Data 1.1 and Notation 2.5. If ε is an integer, then let ε̄

represent the image of ε in Z
(nnn) . Let X be a Mnnn-homogeneous P-module. The

element x of X is called rrr-restricted if the Mnnn-degree of x is

(3.1.1) m(A,rrrε1,rrrε2,rrrε3,rrrε4) for A and εh in Z, with ε̄h ∈ {0̄, 1̄}, for 1≤ h≤ 4.

The module X is called rrr-restricted if there exists a minimal Mnnn-homogeneous pre-
sentation

F1
d1−→ F0

aug−−→ X → 0

in which the generators of F0 and F1 all are rrr-restricted.

Example 3.2. Adopt Data 1.1. The P-module P/(xN
1 ,x

N
2 ,x

N
3 ,x

N
4 , fnnn) is rrr-restricted.

Remark 3.3. If m1 and m2 are in Mnnn, with P(−m1) and P(−m2) both rrr-restricted
free P-modules of rank one, then every Mnnn-homogeneous P-module homomor-
phism φ : P(−m2)→ P(−m1) is given by multiplication by an element of P of the
form

(3.3.1) xe1
1 xe2

2 xe3
3 xe4

4 g(xnnn
1,x

nnn
2,x

nnn
3,x

nnn
4)

for some homogeneous polynomial g of degree A and some integers A,e1,e2,e3,e4,
with each eh ∈ {nnn− rrr,0,rrr} and m(A,e1,e2,e3,e4) = m2−m1. Indeed, φ is given by
multiplication by an Mnnn-homogeneous element of P of degree m2−m1 and every
such element has the form (3.3.1).

Lemma 3.4. Retain Data 1.1. Let X be a finitely generated Mnnn-homogeneous P-
module which is rrr-restricted in the sense of Definition 3.1. Then the following
statements hold.
(a) Every free module which appears in the minimal Mnnn-homogeneous resolution

F : · · · d3−→ F2
d2−→ F1

d1−→ F0

of X by free P-modules is rrr-restricted.
(b) Every entry in every matrix di from F has the form (3.3.1).
(c) If P(−m2) and P(−m1) are Mn-homogeneous summands of Fi+1 and Fi−1, re-

spectively, for some integer i, then the composition

P(−m2)
� � // Fi+1

di+1 // Fi
di // Fi−1 // // P(−m1)

is multiplication by an element of the form (3.3.1).
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Proof. Assertions (b) and (c) follow from (a) combined with Remark 3.3. We prove
(a). Let

F2
d2−→ F1

d1−→ F0
d0−→ X → 0

be a minimal Mnnn-homogeneous exact sequence of P-module homomorphisms with

F2 =
b2⊕

s=1

P(−m2,s), F1 =
b1⊕

q=1

P(−m1,q), and F0 =
b0⊕

p=1

P(−m0,p),

where the shifts
m0,p = m(A0,p,rrrε1,p,rrrε2,p,rrrε3,p,rrrε4,p), with ε̄h,p ∈ {0̄, 1̄}, and
m1,q = m(A1,q,rrrε′1,q,rrrε′2,q,rrrε′3,q,rrrε′4,q)

, with ε̄′h,q ∈ {0̄, 1̄},

have the form of (3.1.1). We prove that each m2,s = m(A2,s,λ1,s,λ2,s,λ3,s,λ4,s) has the
form of (3.1.1). At that point Imd1 satisfies the hypotheses that are satisfied by X ;
hence one can iterate the procedure to construct

Fj+1
d j−→ Fj,

for 2≤ j.
Let H1,1 · · · H1,b2

...
...

Hb1,1 · · · Hb1,b2


be the Mnnn-homogeneous matrix for d2. Observe that

(3.4.1) m2,s = m1,q +degHq,s,

for all q and s with 1 ≤ q ≤ b1 and 1 ≤ s ≤ b2, where “deg” represents the degree
in the Mnnn-grading. Let

degHp,q = m(Bp,q,w1,p,q,w2,p,q,w3,p,q,w4,p,q),

with Bp,q and wh,p,q in Z, for each ordered pair (p,q) which appears in the matrix
d2. It follows, from (3.4.1), that

(3.4.2) λ̄h,s = rrrε̄
′
h,q + w̄h,q,s.

for all h,q,s with 1≤ h≤ 4, 1≤ q≤ b1, and 1≤ s≤ b2.
Fix (h,s) with 1≤ h≤ 4 and 1≤ s≤ b2. The relationH1,s

...
Hb1,s


on d1 is a minimal relation. The target of d1 is the free P-module F0 and P is
a domain. Consequently, the variable xh does not divide all of the polynomials
{Hq,s | 1 ≤ q ≤ b1}. Indeed, when h and s are fixed there exits a parameter q with
w̄h,q,s = 0̄. Apply (3.4.2). Keep in mind that ε̄′h,q ∈ {0̄, 1̄}. Conclude λ̄h,s ∈ {0̄, r̄rr}.
This process holds for all fixed (h,s). We conclude that all λ̄h,s are in {0̄, r̄rr}. Thus,
all m2,s have the desired form. �
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4. THE MULTI-GRADED RESOLUTION Gddd,nnn,rrr FROM [22].

The following result is [22, Cor. 7.1].

Theorem 4.1. Adopt the setup of Data 1.1, Notation 2.4, and Notation 2.5 with
kkk a field of characteristic zero and ddd positive, then the minimal Mnnn-homogeneous
resolution Gddd,nnn,rrr of Qddd,nnn,rrr by free P̄nnn-modules has the form

Gddd,nnn,rrr : . . .
G−→5

ḡ5−→ G4
ḡ4−→ G3

ḡ3−→ G2
ḡ2−→ G1

ḡ1−→ G0,

with

G0 = P̄nnn,

G1 =
4⊕

j=1

P̄nnn[−m(ddd,rrrz j)],

G2 = P̄nnn[−m(2ddd−1,rrr)]
ddd⊕

⊕
1≤ j<k≤4

P̄nnn[−m(2ddd,rrrz j+rrrzk)]
ddd+1⊕ P̄nnn[−m(2ddd+1,0)]

ddd+1,

Gi =
⊕

1≤ j<k<`≤4

P̄nnn[−m(2ddd+ i−3
2 ,rrrz j+rrrzk+rrrz`)

]2ddd+1⊕
4⊕

j=1

P̄nnn[−m(2ddd+ i−1
2 ,rrrz j)

]2ddd+1,

for i odd with 3≤ i, and

Gi =

P̄nnn[−m(2ddd+ i−4
2 ,rrr)]

2ddd+1⊕
⊕

1≤ j<k≤4
P̄nnn[−m(2ddd+ i−2

2 ,rrrz j+rrrzk)
]2ddd+1

⊕P̄nnn[−m(2ddd+ i
2 ,0)

]2ddd+1,

for i even with 4≤ i.

The paper [22] does not explicitly give the form of the matrices gi from Gnnn,rrr,ddd;
however, this is an easy exercise. (As always, the matrix gi has entries from P and
ḡi is the image of gi with entries in P̄nnn.)

Corollary 4.2. Retain the notation of Theorem 4.1. The form of the matrices g4 and
g5 is given in Table 2 with each (2ddd+1)×(2ddd+1) matrix Mi j and Ni j an invertible
matrix of constants.

Proof. Decompose the free modules Gk, with 3≤ k ≤ 5 as follows:

G3 = P̄nnn[−m(2ddd,0,rrr,rrr,rrr)]
2ddd+1⊕ P̄nnn[m(2ddd,rrr,0,rrr,rrr)]

2ddd+1⊕ P̄nnn[m(2ddd,rrr,rrr,0,rrr)]
2ddd+1

⊕ P̄nnn[m(2ddd,rrr,rrr,rrr,0)]
2ddd+1⊕ P̄nnn[m(2ddd+1,rrr,0,0,0)]

2ddd+1⊕ P̄nnn[m(2ddd+1,0,rrr,0,0)]
2ddd+1

⊕ P̄nnn[m(2ddd+1,0,0,rrr,0)]
2ddd+1⊕ P̄nnn[m(2ddd+1,0,0,0,rrr)]

2ddd+1,

G4 = P̄nnn[−m(2ddd,rrr,rrr,rrr,rrr)]
2ddd+1⊕ P̄nnn[−m(2ddd+1,rrr,rrr,0,0)]

2ddd+1

⊕ P̄nnn[−m(2ddd+1,rrr,0,rrr,0)]
2ddd+1⊕ P̄nnn[−m(2ddd+1,rrr,0,0,rrr)]

2ddd+1

⊕ P̄nnn[−m(2ddd+1,0,0,rrr,rrr)]
2ddd+1⊕ P̄nnn[−m(2ddd+1,0,rrr,0,rrr)]

2ddd+1

⊕ P̄nnn[−m(2ddd+1,0,rrr,rrr,0)]
2ddd+1⊕ P̄nnn[−m(2ddd+2,0,0,0,0)]

2ddd+1, and
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G5 = P̄nnn[−m(2ddd+1,0,rrr,rrr,rrr)]
2ddd+1⊕ P̄nnn[m(2ddd+1,rrr,0,rrr,rrr)]

2ddd+1

⊕ P̄nnn[m(2ddd+1,rrr,rrr,0,rrr)]
2ddd+1⊕ P̄nnn[m(2ddd+1,rrr,rrr,rrr,0)]

2ddd+1

⊕ P̄nnn[m(2ddd+2,rrr,0,0,0)]
2ddd+1⊕ P̄nnn[m(2ddd+2,0,rrr,0,0)]

2ddd+1

⊕ P̄nnn[m(2ddd+2,0,0,rrr,0)]
2ddd+1⊕ P̄nnn[m(2ddd+2,0,0,0,rrr)]

2ddd+1.

The only possible non-zero Mnnn-homogeneous maps G5→ G4 and G4→ G3 have
the form of the matrices in Table 2, for some matrices of constants Mi j and Ni j.
It remains to explain why all of the Mi j and Ni j must be invertible. According
to Eisenbud’s results on matrix factorization [10], fnnn is in the radical of the ideal
generated by determinant of gk for each k, with 3≤ k. If some Mi j or Ni j is singular,
then the determinant of the corresponding gk is contained in the ideal generated by
three of the variables x1,x2,x3,x4; hence fnnn /∈

√
detgk and this is a contradiction.

�

5. THE MAPS FROM THE “UNIVERSAL RESOLUTION” Gddd TO EACH Gddd,nnn,rrr .

5.1. Fix a non-negative integer ddd. Recall P, f, P̄, Cddd , Qddd , M, and Gddd from Data 1.3.
Let Iddd be the ideal (Cd, f) of P and let Lddd be the minimal M-homogeneous reso-
lution of P/Iddd by free P-modules. Let nnn and rrr be arbitrary integers which satisfy
(1.1.1). Recall P, fnnn, P̄nnn, Cddd,nnn,rrr, Qddd , Mnnn, and Gddd,nnn.rrr from Data 1.1. Let Iddd,nnn,rrr be the
ideal (Cddd,nnn,rrr, fnnn) of P and let Lddd,nnn,rrr be the minimal Mnnn-homogeneous resolution of
P/Iddd,nnn,rrr by free P-modules. Let Snnn,rrr be the subring

kkk[xrrr
1, xnnn−rrr

1 , xrrr
2, xnnn−rrr

2 , xrrr
3, xnnn−rrr

3 , xrrr
4, xnnn−rrr

4 ]

of P.

Definition 5.2. Retain the data of 5.1. Define the kkk-algebra homomorphism

∆nnn,rrr : P→ P

with
∆nnn,rrr(yi) = xrrr

i and ∆nnn,rrr(wi) = xnnn−rrr
i

and define the group homomorphism αnnn,rrr : M→Mnnn by

αnnn,rrr(a1,a2,a3,a4,a5,a6) = (rrra1 +(nnn−rrr)a2,rrrā3,rrrā4,rrrā5,rrrā6)

for

(a1,a2,a3,a4,a5,a6) ∈M= Z6 and

(rrra1 +(nnn−rrr)a2,rrrā3,rrrā4,rrrā5,rrrā6) ∈Mnnn = Z⊕ ( Z
nnnZ)

4,

where āi is the image of the integer ai in Z
nnnZ .

Remarks 5.3. Retain the notation of Definition 5.2.
(a) Observe that

∆nnn,rrr(f) = fnnn, ∆nnn,rrr(Cddd) =Cddd,nnn,rrr, and ∆nnn,rrr(Iddd) = Iddd,nnn,rrr.

It follows that the ring homomorphism ∆nnn,rrr : P→ P induces a ring homomor-
phism ∆̄nnn,rrr : P̄→ P̄nnn.
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(b) If θ is an M-homogeneous element of P, then ∆nnn,rrr(θ) is an Mnnn-homogeneous
element of P and

(5.3.1) αnnn,rrr(M-degree(θ)) = Mnnn-degree(∆nnn,rrr(θ)).

Indeed, if θ = ya1
1 wb1

1 ya2
2 wb2

2 ya3
3 wb3

3 ya4
4 wb4

4 , then both sides of (5.3.1) are equal to(
rrr

4

∑
i=1

ai +(nnn−rrr)
4

∑
i=1

bi,rrr(ā1− b̄1),rrr(ā2− b̄2),rrr(ā3− b̄3),rrr(ā4− b̄4)

)
in Mnnn = Z⊕ ( Z

nnnZ)
4.

(c) Let
γ = gcd(rrr,nnn−rrr), rrr′ = rrr/γ, and nnn′ = nnn/γ,

where “gcd” means greatest common divisor. It is well-known, and easy to
prove, that the kkk-algebra homomorphism

kkk[y,w]→ kkk[x],

given by y 7→ xrrr and w 7→ xnnn−rrr, has kernel (ynnn′−rrr′ −wrrr′). Thus, the kkk-algebra
homomorphism

∆nnn,rrr : P→ P
induces a ring isomorphism from

P

(ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 )
→ Snnn,rrr.

View P̄nnn as a P̄-module by way of the ring homomorphism ∆nnn,rrr : P̄→ P̄nnn of
Remark 5.3.(a). The heart of the paper is Theorem 7.5, where we prove that the
complex Gd⊗P̄ P̄nnn is a resolution of Qddd,nnn,rrr by free P̄nnn-modules. The first step in the
proof of Theorem 7.5 is to show that the ideal Iddd = (Cddd, f) in the polynomial ring
P is perfect of grade four. This step is carried Section 6.

6. THE IDEAL Iddd = (yddd+1
1 wddd

1,y
ddd+1
2 wddd

2,y
ddd+1
3 wddd

3,y
ddd+1
4 wddd

4, f) IN THE POLYNOMIAL
RING P.

Adopt the notation of 5.1. In Theorem 6.2 we prove that the ideal Iddd = (Cddd, f)
in the polynomial ring P is perfect of grade four and we give the structure of the
minimal M-homogeneous resolution of P/Iddd by free P-modules. This result is
significant to us because the rings

P

Iddd
and Qddd

are equal.
To prove Theorem 6.2, we first consider the ideal Iddd,nnn,rrr = (Cddd,nnn,rrr, fnnn) in P. The

numerical information about the minimal Mnnn-homogeneous resolution, Lddd,nnn,rrr, of
P/Iddd,nnn,rrr by free P-modules is calculated in [22]. This numerical information may
be read to give the precise form of each entry of each differential in Lddd,nnn,rrr. We
carefully “lift” the differentials of Lddd,nnn,rrr to homomorphisms of P-modules. We
prove Theorem 6.2 by showing that the “lifted” homomorphisms form a resolution
of P/Iddd by free P-modules.
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Theorem 6.1. Adopt Data 1.1 with ddd positive and kkk a field of characteristic zero.
Let Iddd,nnn,rrr be the ideal (Cddd,nnn,rrr, fnnn) of P and Lddd,nnn,rrr be the minimal Mnnn-homogeneous
resolution of P/Iddd,nnn,rrr by free P-modules. Then the following statements hold.

(a) The resolution Lddd,nnn,rrr has the form

0→ (Lddd,nnn,rrr)4
(`ddd,nnn,rrr)4−−−−→ (Lddd,nnn,rrr)3

(`ddd,nnn,rrr)3−−−−→ (Lddd,nnn,rrr)2
(`ddd,nnn,rrr)2−−−−→ (Lddd,nnn,rrr)2

(`ddd,nnn,rrr)1−−−−→ (Lddd,nnn,rrr)0,

where (Lddd,nnn,rrr)0 = P,

(Lddd,nnn,rrr)1 =

 P(−m(1,0))

⊕
4⊕

i=1
P(−m(ddd,rrrzi)),

(Lddd,nnn,rrr)2 =



4⊕
i=1

P(−m(ddd+1,rrrzi))

⊕P(−m(2ddd−1,rrr))
ddd

⊕
⊕

1≤i< j≤4
P(−m(2ddd,rrrzi+rrrz j))

ddd+1

⊕P(−m(2ddd+1,0))
ddd+1,

(Lddd,nnn,rrr)3 =


4⊕

i=1
P(−m(2ddd+1,rrrzi))

2ddd+1

⊕
⊕

1≤i< j<k≤4
P(−m(2ddd,rrrzi+rrrz j+rrrzk))

2ddd+1, and

(Lddd,nnn,rrr)4 =


P(−m(2ddd+2,0))

ddd

⊕
⊕

1≤i< j≤4
P(−m(2ddd+1,rrrzi+rrrz j))

ddd

⊕P(−m(2ddd,rrr))
ddd+1.

(b) If θ is an entry in one of the matrices (`ddd,nnn,rrr)i, then

θ = xe1
1 xe2

2 xe3
3 xe4

4 g(xnnn
1,x

nnn
2,x

nnn
3,x

nnn
4),

where each ei is in the set {rrr,nnn−rrr,0} and g is a homogeneous polynomial in
the polynomial ring kkk[ξ1,ξ2,ξ3,ξ4].

(c) The form of each differential of Lddd,nnn,rrr is given in Section 12. The notation is
explained in 12.1. The form of the differential (`ddd,nnn,rrr)1 is given in Table 6; the
form of (`ddd,nnn,rrr)2 is given in Tables 7 and 8; the form of (`ddd,nnn,rrr)3 is given in
Tables 9 and 10; and the form of (`ddd,nnn,rrr)4 is given in Tables 11 and 12.

Proof. Assertion (a) is [22, Cor. 7.2]; (b) is an immediate consequence of (a); and
(c) is a rephrasing of (b). �

We carefully lift the complex Lddd,nnn,rrr of free P-modules to maps and modules over
P. It does not matter what we take for nnn and rrr as long as nnn 6= 2rrr.

Theorem 6.2. Adopt the notation of 1.3 and let Iddd be the ideal (Cddd, f) of P. Then
the following statements hold.

(a) The ideal Iddd in the polynomial ring P is perfect of grade four.
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(b) The minimal M-homogeneous resolution of P/Iddd by free P-modules has the
form

0→ (Lddd)4
(lddd)4−−→ (Lddd)3

(lddd)3−−→ (Lddd)2
(lddd)2−−→ (Lddd)1

(lddd)1−−→ (Lddd)0,

where

(Lddd)0 =P,

(Lddd)1 =P(−(1,1,0))1⊕
4⊕

i=1

P(−(ddd +1,ddd,zi))
1,

(Lddd)2 =


4⊕

i=1
P(−(ddd +2,ddd +1,zi))

1⊕P(−(2ddd +3,2ddd−1,1))ddd

⊕
⊕

1≤i< j≤4
P(−(2ddd +2,2ddd,zi + z j))

ddd+1

⊕P(−(2ddd +1,2ddd +1,0))ddd+1,

(Lddd)3 =


4⊕

i=1
P(−(2ddd +2,2ddd +1,zi))

2ddd+1

⊕
⊕

1≤i< j<k≤4
P(−(2ddd +3,2ddd,zi + z j + zk))

2ddd+1,and

(Lddd)4 =

P(−(2ddd +2,2ddd +2,0))ddd⊕
⊕

1≤i< j≤4
P(−(2ddd +3,2ddd +1,zi + z j))

ddd

⊕P(−(2ddd +4,2ddd,1))ddd+1.

(c) The form of each differential of Lddd is given in Section 12. The notation is
explained in 12.1. The form of the differential l1 is given in Table 13; the form
of l2 is given in Tables 14, 15, and 16; the form of l3 is given in Tables 17 and
18; and the form of l4 is given in Tables 19 and 20.

Proof. Let nnn and rrr be arbitrary integers which satisfy (1.1.1) with nnn 6= 2rrr. We begin
by building the matrices li with entries in P. Consider an entry θ in one of the
matrices (`ddd,nnn,rrr)i. According to Theorem 6.1.(b),

θ = xe1
1 xe2

2 xe3
3 xe4

4 g(xnnn
1,x

nnn
2,x

nnn
3,x

nnn
4),

where each ei is in the set {rrr,nnn−rrr,0} and g is a homogeneous form in four variables
over kkk. We now define the corresponding entry in (lddd)i to be

λ1λ2λ3λ4g(y1w1,y2w2,y3w3,y4w4),

where

λi =


yi, if ei = rrr,
wi, if ei = nnn−rrr, and
1, if ei = 0.

(The integers rrr and nnn−rrr are different because we have chosen nnn and r with nnn 6= 2rrr.)
We have made maps and modules

(6.2.1) Lddd : 0→ (Lddd)4
(lddd)4−−→ (Lddd)3

(lddd)3−−→ (Lddd)2
(lddd)2−−→ (Lddd)1

(lddd)1−−→ (Lddd)0.



THE SYZYGIES OF THE IDEAL (xN
1 ,x

N
2 ,x

N
3 ,x

N
4 ) OVER ANY FIELD. 15

In fact, we have recorded the maps (lddd)i, for 1 ≤ i ≤ 4, in Tables 13–20. We have
also recorded the M-homogeneous Betti numbers of these maps in the statement of
Theorem 6.2.(b). It is clear that the image of (lddd)1 is Iddd . It is clear that the diagram

(6.2.2) (Lddd)i

∆nnn,rrr
��

(lddd)i // (Lddd)i−1

∆nnn,rrr
��

(Lddd,nnn,rrr)i
(`ddd,nnn,rrr)i// (Lddd,nnn,rrr)i−1

commutes for all i. It remains to show that Lddd from (6.2.1) is a complex and is
acyclic.

We first show that Lddd is a complex.

Claim. Each entry of each composition (lddd)i ◦ (lddd)i+1 has the form

(6.2.3) λ1λ2λ3λ4g(y1w1,y2w2,y3w3,y4w4),

where each λh is an element of {yh,wh,1} and each g is a homogeneous polynomial
in four variables over kkk.

Proof of Claim. Fix integers i, p,q with 1≤ i≤ 3, 1≤ p≤ rank(Lddd,nnn,rrr)i−1, and

1≤ q≤ rank(Lddd,nnn,rrr)i+1.

Let P(−m2) be the summand of (Lddd,nnn,rrr)i+1 in position q and P(−m1) be the sum-
mand of (Lddd,nnn,rrr)i+1 in position p. The product row p of (`ddd,nnn,rrr)i times column q of
(`ddd,nnn,rrr)i+1 is

rank(Lddd,nnn,rrr)i

∑
j=1

[(`ddd,nnn,rrr)i])p, j[(`ddd,nnn,rrr)i+1] j,q.

According to Lemma 3.4.(c) there are uniquely determined integers A,e1,e2,e3,e4
with

eh ∈ {nnn−rrr,0,rrr}, and m(A,e1,e2,e3,e4) = m2−m1,

such that, for each index j, with 1 ≤ j ≤ rank(Lddd,nnn,rrr)i, there is a homogeneous
polynomial g j, of degree A, in kkk[ξ1,ξ2,ξ3,ξ4], with

[(`ddd,nnn,rrr)i])p, j[(`ddd,nnn,rrr)i+1] j,q = xe1
1 xe2

2 xe3
3 xe4

4 g(xnnn
1,x

nnn
2,x

nnn
3,x

nnn
4).

Now lift the calculation from P to P. Observe that the product row p of (lddd)i
times column q of (lddd)i+1 is the sum of rank(Lddd)i elements of P each of which has
the form of (6.2.3). This completes the proof of the claim. �

Resume the proof that Lddd is a complex. We know from (6.2.2) that

∆nnn,rrr((lddd)i ◦ (lddd)i+1) = 0,

for each i. Thus, each entry of (lddd)i ◦ (lddd)i+1 is in the kernel of ∆nnn,rrr. The element
(6.2.3) is in ker∆nnn,rrr if and only if g(y1w1,y2w2,y3w3,y4w4) is in ker∆nnn,rrr. The only
homogeneous polynomial g ∈ kkk[ξ1,ξ2,ξ3,ξ4], with

g(y1w1,y2w2,y3w3,y4w4) ∈ ker∆nnn,rrr

is the zero polynomial. We conclude that (lddd)i ◦ (lddd)i+1 = 0, for all i; hence, Lddd is a
complex; furthermore ∆nnn,rrr : Lddd → Lddd,nnn,rrr is a map of complexes.
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We employ the Buchsbaum-Eisenbud criteria [5] in order to show that Lddd is
acyclic. It suffices to show that the matrices (lddd)i have the expected rank (denoted
eri) and that the ideal I((lddd)i), generated by the eri-minors of (lddd)i, has grade at
least i, for each i. Let I((`ddd,nnn,rrr)i) represent the ideal of P which is generated by the
eri-minors of (`ddd,nnn,rrr)i. The map of complexes ∆nnn,rrr carries I((lddd)i) to I((`ddd,nnn,rrr)i), for
each i. The complex Lddd,nnn,rrr resolves P/Cddd,nnn,rrr, which is a perfect P-module of pro-
jective dimension four. It follows that the ideals I((`ddd,nnn,rrr)i), with 1 ≤ i ≤ 4, all are
primary to the maximal ideal (x1,x2,x3,x4) of P. (See, for example, [14, Props. 6.8
and 6.3.(c)].) Thus, each ideal ∆nnn,rrr(I((lddd)i)) has grade four. We finish the argument
by showing that each I((lddd)i) has grade at least four. The concepts of grade and
height coincide in the Cohen-Macaulay ring P; so we show that each ideal I((lddd)i)
has height at least four.

Let q1 be a prime ideal of P which is minimal over I((lddd)i) and has the same
height. The ideal I((lddd)i) is M-homogeneous and q1 is minimal over I((lddd)i); so
q1 is also M-homogeneous. Let q2 be the kernel of ∆nnn,rrr : P→ P. Recall from
Remark 5.3.(c) that the ring P/q2 is isomorphic to Snnn,rrr. The ideal (q1 + q2)/q2 is
a proper Mnnn-homogeneous ideal of P/q2 ∼= Snnn,rrr; so q1 +q2 is a proper ideal of P.
Let q3 be a prime ideal of P which is minimal over q1 +q2. It is well-known that

htq3 ≤ htq1 +htq2.

(A proof from Algebraic Geometry (when kkk is algebraically closed) may be found
in [13, Chapt. 1, Prop. 7.1]. A proof in the present generality is given in [27, III,
Prop. 17]. A proof which works over an arbitrary regular ring is given in [27, V.
Thm. 3].) At any rate, it follows that

htq3−htq2 ≤ htq1 = ht I((lddd)i).

Of course, htq3−htq2 = ht q3
q2

. We have seen that q3
q2

is the maximal ideal

radical(I((`ddd,nnn,rrr)i))∩Snnn,rrr = (xrrr
1,x

nnn−rrr
1 ,xrrr

2,x
nnn−rrr
2 ,xrrr

3,x
nnn−rrr
3 ,xrrr

4,x
nnn−rrr
4 )

of Snnn,rrr. Thus,

4 = ht
q3

q2
= htq3−htq2 ≤ htq1 = ht I((lddd)i)

and the proof is complete. �

7. THE HOMOMORPHISM ∆̄nnn,rrr CARRIES THE RESOLUTION OF Qddd TO A
RESOLUTION OF Qddd,nnn,rrr .

Retain the data of 5.1. View P̄nnn as a P̄-module by way of the ring homomor-
phism ∆̄nnn,rrr : P̄→ P̄nnn. Recall that Gddd is a resolution of Qddd by free P̄-modules. In
Theorem 7.5 we prove that the complex Gddd⊗P̄ P̄nnn is a resolution of Qddd,nnn,rrr by free
P̄nnn-modules.

The proof of Theorem 7.5 is given at the end of the section. In the meantime we
record various intermediate results. Notice first that

(7.0.1) H0(Gddd⊗P̄ P̄nnn)∼= Qddd,nnn,rrr.
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Indeed, the complex Gddd is a resolution of Qddd by free P̄-modules; hence, the ho-
mology of Gddd⊗P̄ P̄nnn is TorP̄• (Qddd, P̄nnn). In particular,

H0(Gddd⊗P̄ P̄nnn) = TorP̄0 (Qddd, P̄nnn) =
P̄

CdddP̄
⊗P̄ P̄nnn =

P̄nnn

∆̄nnn,rrr(Cddd) · P̄nnn
=

P̄nnn

Cddd,nnn,rrrP̄nnn
= Qddd,nnn,rrr.

The complex Gddd⊗P̄ P̄nnn is clearly a complex of free P̄nnn-modules. It remains to show
that the complex Gddd⊗P̄ P̄nnn is acyclic.

In order to prove Theorem 7.5, we view ∆̄nnn,rrr : P̄→ P̄nnn as the composition of two
ring homomorphisms:

P̄ // // Im(∆̄nnn,rrr)
� � // P̄nnn,

where

(7.0.2) Im(∆̄nnn,rrr) =
Snnn,rrr

( fnnn)
.

The ultimate complex Gddd⊗P P̄nnn from Theorem 7.5 is equal to

Gddd⊗P̄ Im(∆̄nnn,rrr)⊗Im(∆̄nnn,rrr)
P̄nnn.

We prove that Gddd⊗P̄ Im(∆̄nnn,rrr) is acyclic in Lemma 7.2. Then we apply Lemma 7.4
to conclude that the complex(

Gddd⊗P̄ Im(∆̄nnn,rrr)
)
⊗Im(∆̄nnn,rrr)

P̄nnn

is acyclic.

Lemma 7.1. Retain the data of 5.1 and Remark 5.3.(c). Then the following state-
ments hold.
(a) The elements

ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4

of P form a regular sequence on Qddd .
(b) The elements

ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 , f

of P form a regular sequence on P.

Proof. We first prove (a). According to Theorem 6.2, the ideal

Iddd = (yddd+1
1 wddd

1, yddd+1
2 wddd

2, yddd+1
3 wddd

3, yddd+1
4 wddd

4,y1w1 + y2w2 + y3w3 + y4w4)

of the polynomial ring P is perfect of grade four. It follows that the associated
prime ideals of P/Iddd are the prime ideals of P which are minimal over Iddd . It is
clear that these ideals all have the form (v1,v2,v3,v4), where vi is equal to either yi

or wi. It is also clear that ynnn′−rrr′
1 −wrrr′

1 is not in any of the associated prime ideals
of P/Iddd . Thus, the element ynnn′−rrr′

1 −wrrr′
1 of P is regular on P/Iddd . It follows that

(Iddd,y
nnn′−rrr′
1 −wrrr′

1 ) is a perfect ideal of P of grade five. The associated prime ideals
of

P/(Iddd,y
nnn′−rrr′
1 −wrrr′

1 )
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are the prime ideals of P which are minimal over (Iddd,y
nnn′−rrr′
1 −wrrr′

1 ). It is clear that
these ideals all have the form (y1,w1,v2,v3,v4), where vi is equal to either yi or
wi. It is also clear that ynnn′−rrr′

2 −wrrr′
2 is not in any of the associated prime ideals of

P/(Iddd,y
nnn′−rrr′
1 −wrrr′

1 ). Continue in this manner to conclude that the elements

ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4

of P form a regular sequence on P/Iddd =Qddd .
Now we prove (b). We have seen that each of the ideals

(ynnn′−rrr′
1 −wrrr′

1 )⊆ (ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 )

⊆ (ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 )

⊆ (ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 )

of P is prime; indeed, these ideals define the domains

kkk[xrrr
1, xnnn−rrr

1 ]⊆ kkk[xrrr
1, xnnn−rrr

1 , xrrr
1, xnnn−rrr

2 ]⊆ kkk[xrrr
1, xnnn−rrr

1 , xrrr
1, xnnn−rrr

2 , xrrr
3, xnnn−rrr

3 ]

⊆ kkk[xrrr
1, xnnn−rrr

1 , xrrr
1, xnnn−rrr

2 , xrrr
3, xnnn−rrr

3 , xrrr
4, xnnn−rrr

4 ] = Snnn,rrr.

Thus, the elements ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 of P form a
regular sequence in P. On the other hand, y1w1 + y2w2 + y3w3 + y4w4 is not an
element of the prime ideal

(ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 )

since ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , and ynnn′−rrr′
4 −wrrr′

4 all vanish at the points

p= (1,1,1,1,1,1,1,1) and p′ = (1,1,1,1,1,1,0,0),

but y1w1 + y2w2 + y3w3 + y4w4 does not vanish at both p and p′. We conclude that
the elements

ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 , y1w1 + y2w2 + y3w3 + y4w4

of P form a regular sequence on P. �

Lemma 7.2. Retain the data of 5.1 and (7.0.2). Then the complex Gddd⊗P̄ Im(∆̄nnn,rrr)
is acyclic.

Proof. We show that the complex

(7.2.1) Gd⊗P̄

P̄

(ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 )P̄

is acyclic. The homology of (7.2.1) is

TorP̄•

(
Qddd ,

P̄

(ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 )P̄

)
.

Thus, the homology of (7.2.1) is equal to

H•
(
Qddd⊗P̄K

)
,
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where K is a resolution of
P̄

(ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 )P̄

by free P̄-modules. According to Lemma 7.1.(b), the elements

ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 , f

of P form a regular sequence on P. The ring P is a domain and f is not zero; so, f
is a regular element on P and the ideal

(ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4 )P̄

has grade four. Consequently, we may take K to be the Koszul complex of free
P̄-modules which is associated to the elements

(7.2.2) ynnn′−rrr′
1 −wrrr′

1 , ynnn′−rrr′
2 −wrrr′

2 , ynnn′−rrr′
3 −wrrr′

3 , ynnn′−rrr′
4 −wrrr′

4

of P̄. Apply Lemma 7.1.(a) in order to see that the elements (7.2.2) of P form
a regular sequence on Qddd It follows that Qddd ⊗P̄ K is acyclic; and therefore, the
complex (7.2.1) is also acyclic. �

Corollary 7.3. The complex Gddd⊗P̄ Im(∆̄nnn,rrr) of Lemma 7.2 is a minimal Mn homo-
geneous resolution of H0(Gddd⊗P̄ Im(∆̄nnn,rrr)).

Proof. The complex Gddd is the minimal M-homogeneous resolution of Qddd by free
P-modules. No units appear in the differentials of Gddd . Every non-zero entry of
every differential matrix from Gddd has M-degree (a1,a2,a3,a4,a5,a6) with a1 and a2
both non-negative and at least one of the integers a1 or a2 positive. It follows, from
(5.3.1), that every non-zero entry of every differential matrix from Gddd⊗P̄ Im(∆̄nnn,rrr)
has Mnnn-degree

αnnn,rrr(a1,a2,a3,a4,a5,a6) = (rrra1 +(nnn−rrr)a2,rrrā3,rrrā4,rrrā5,rrrā6),

with rrra1 +(nnn− rrr)a2 positive. Thus, Gddd ⊗P̄ Im(∆̄nnn,rrr) is an Mnnn-homogeneous res-
olution of H0(Gddd ⊗P̄ Im(∆̄nnn,rrr)) and no units appear in the differential matrices of
this resolution. We conclude that Gddd⊗P̄ Im(∆̄nnn,rrr) is the minimal Mnnn-homogeneous
resolution of H0(Gddd⊗P̄ Im(∆̄nnn,rrr)) by free Im(∆̄nnn,rrr)-modules. �

The final step in the proof of Theorem 7.5 is to show that −⊗Im(∆̄nnn,rrr)
P̄nnn carries

a particular acyclic complex of free Im(∆̄nnn,rrr)-modules to an acyclic complex. The
proof is somewhat delicate because the inclusion map Im(∆̄nnn,rrr) ↪→ P̄nnn is not a flat
ring homomorphism. Indeed, it is clear that the inclusion map

R′ = kkk[x2,x3] ↪→ kkk[x] = R

is not a flat ring homomorphism; for example,

Torkkk[x2,x3]
+

(
kkk[x2,x3]

(x2,x3)kkk[x2,x3]
, kkk[x]

)
is far from zero. On the other hand, there do exist kkk[x2,x3]-modules M for which

(7.3.1) Torkkk[x2,x3]
+ (M , kkk[x]) = 0.
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In particular, M = kkk[x2,x3]
(x2)kkk[x2,x3]

has property (7.3.1). In Lemma 7.4 we identify many
modules M with property (7.3.1).

Lemma 7.4 has many hypotheses, but almost no proof. We refer to the technique
as “lifting a resolution over the ring R to a resolution over the subring R′”. When
we apply Lemma 7.4 in the proof of Theorem 7.5,

Im(∆̄nnn,rrr) will play the role of R′,

P̄nnn will play the role of R,

Im ∆̄nnn,rrr

Cddd,nnn,rrr
will play the role of H0(F′),

Mnnn will play the role of G ,

and the subgroup of Mnnn generated by

(7.3.2)
{

m(1,0), m(0,rrr,0,0,0), m(0,0,rrr,0,0), m(0,0,0,rrr,0), m(0,0,0,0,rrr), m(0,nnn−rrr,0,0,0),
m(0,0,nnn−rrr,0,0), m(0,0,0,nnn−rrr,0), m(0,0,0,0,nnn−rrr)

}
will play the role of G ′.

Lemma 7.4. Let R be a commutative ring which is graded by an Abelian group G .
Suppose that G ′ is a subgroup of G and that R′ is the subring of R defined by the
following rule. If r is a homogeneous element of R, then

(7.4.1) r is in R′ if and only if the degree of r is in G ′.

Let

F : · · · →
βi⊕

j=1

R[−mi, j]
di−→

βi−1⊕
j=1

R[−mi−1, j]
di−1−−→ ·· · d1−→

β0⊕
j=1

R[−m0, j]→ 0

be an acyclic, G -homogeneous, complex of finitely generated free R-modules. Sup-
pose that every twist mi, j is actually an element of G ′. Then

F′ : · · · →
βi⊕

j=1

R′[−mi, j]
di−→

βi−1⊕
j=1

R′[−mi−1, j]
di−1−−→ ·· · d1−→

β0⊕
j=1

R′[−m0, j]→ 0

is an acyclic, G ′-homogeneous, complex of finitely generated R′-modules and

F′⊗R′ R

is a G -homogeneous resolution of H0(F′)⊗R′ R by free R-modules.

Proof. Each map di of F may be represented by a matrix. Each entry in each matrix
di is in R′ (because of hypothesis (7.4.1) and the hypothesis that each mi, j is in G ′).
The product didi+1 is zero in R; so the product is also zero in R′. Thus, F ′ is a
complex of free R′-modules. If ξ ∈ (F′)i is a homogeneous cycle in F′, for some
positive i, then ξ is a homogeneous i-cycle in F. The complex F is acyclic (and
i is positive); so, ξ is a homogeneous boundary in Fi. In other words, there is a
homogeneous element Ξ in Fi with

(7.4.2) di+1(Ξ) = ξ.
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View equation (7.4.2) as matrix multiplication: di+1 is a matrix and Ξ and ξ are
column vectors. Each entry of di+1 and each entry of ξ is homogeneous, is in R′,
and has degree in the group G ′; furthermore each entry of Ξ is homogeneous and
is in R. It follows that each entry of Ξ also has degree in G ′. Thus, according to
(7.4.1), each entry of Ξ is in R′ and Ξ ∈ (F′)i+1.

We have shown that F′ is a resolution of H0(F′) by free R′-modules. Apply
−⊗R′ R in order to conclude that F′⊗R′ R (which is equal to F) is a resolution of
H0(F′)⊗R′ R by free R-modules. �

Theorem 7.5. Retain the data of 5.1. View P̄nnn as a P̄-module by way of the ring
homomorphism ∆̄nnn,rrr : P̄→ P̄nnn of Remark 5.3.(a). Then the complex Gddd⊗P̄ P̄nnn is a
resolution of Qddd,nnn,rrr by free P̄nnn-modules.

Proof. In light of (7.0.1) and Lemma 7.2, it suffices to show that −⊗Im(∆̄nnn,rrr)
P̄nnn

carries the acyclic complex Gddd⊗P̄ Im(∆̄nnn,rrr) to an acyclic complex.
We know from Corollary 7.3 that Gddd ⊗P̄ Im(∆̄nnn,rrr) is the minimal Mn homoge-

neous resolution of H0(Gddd ⊗P̄ Im(∆̄nnn,rrr)). We know from Theorem 4.1 that Gddd,nnn,rrr

is the minimal Mnnn-homogeneous resolution of Qddd,nnn,rrr by free P̄nnn-modules. We ap-
ply Lemma 7.4 to “lift” Gddd,nnn,rrr from from an acyclic complex of free P̄nnn-modules
to an acyclic complex G′ddd,nnn,rrr of free modules over the subring Im(∆̄nnn,rrr) of P̄nnn.
According to Lemma 7.4 the “lift” G′ddd,nnn,rrr of Gddd,nnn,rrr will be another minimal Mnnn-
homogeneous resolution of Qddd,nnn,rrr by free P̄nnn-modules; hence G′ddd,nnn,rrr will be isomor-
phic to Gddd ⊗P̄ Im(∆̄nnn,rrr). Lemma 7.4 guarantees that G′ddd,nnn,rrr⊗Im(∆̄nnn,rrr)

P̄nnn is acyclic;

so,
(
Gddd⊗P̄ Im(∆̄nnn,rrr)

)
⊗Im(∆̄nnn,rrr)

P̄nnn is also acyclic.
It remains to show that all of the hypotheses of Lemma 7.4 are satisfied. Let

R = P̄nnn and F be the resolution Gddd,nnn,rrr from Theorem 4.1. The resolution Gddd,nnn,rrr is G -
homogeneous for G = Mnnn. Observe that every twist that actually appears in Gddd,nnn,rrr
is in the subgroup G ′ of (7.3.2). Observe, also, that Im(∆̄nnn,rrr), which is recorded in
(7.0.2), is equal to the subring of P̄nnn which is generated by the set of homogeneous
elements θ in P̄nnn such that the Mnnn-degree of θ is an element of G ′. The hypotheses
of Lemma 7.4 are satisfied and G′ddd,nnn,rrr is minimal Mn-homogeneous resolution of
H0(G′ddd,nnn,rrr) by free Im(∆̄nnn,rrr)-modules.

It should be observed that the zeroth homologies all behave correctly:

H0(Gddd) =P/CdddP,

H0(Gddd⊗P̄ Im(∆̄nnn,rrr) =
Im(∆̄nnn,rrr)

Cddd,nnn,rrr Im(∆̄nnn,rrr)
= H0(G′ddd,nnn,rrr), and

H0(Gddd,nnn,rrr) = Qddd,nnn,rrr.

We conclude that

Gddd⊗P̄ P̄nnn =Gddd⊗P̄ Im(∆̄nnn,rrr)⊗Im(∆̄nnn,rrr)
P̄nnn

is the minimal Mnnn-homogeneous resolution of Qddd,nnn,rrr by free P̄nnn-modules. �
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8. THE STRUCTURE OF THE “UNIVERSAL RESOLUTION” Gddd .

We proved in Theorem 7.5 that for each non-negative integer ddd there exists a
single “universal resolution” Gddd such that for each pair nnn,rrr, which satisfy (1.1.1),
every resolution Gddd,nnn,rrr can be obtained from Gddd by way of a base change. The
resolutions {Gddd,nnn,rrr} are the main object of study in the present paper as well as
in the paper [22]. Thus, the resolutions {Gddd} become resolutions of significant
interest. In the present section, we give the explicit description of the infinite tail
of each Gddd; we also give the multi-degrees of all of the Betti numbers in each Gddd .
In particular, we give the multi-graded Betti numbers for (Gddd)2. The differentials
entering and leaving (Gddd)2 involve polynomials of high degree and a large number
of terms.

The results of Lemma 8.1 are interesting in their own right and they are enor-
mously important in the proof of Corollary 10.2, which is the the main theorem of
the paper.

Lemma 8.1. Fix a non-negative integer ddd and a field kkk of characteristic zero. Adopt
the setup of Data 1.3 and Notation 2.4.

Then the minimal M-homogeneous resolution Gddd of Qddd by free P̄-modules has
the form

Gddd : . . .−→ (Gddd)5
g5−→ (Gddd)4

g4−→ (Gddd)3
g3−→ (Gddd)2

g2−→ (Gddd)1
g1−→ (Gddd)0,

with

(Gddd)0 = P̄,

(Gddd)1 =
4⊕

j=1

P̄[−(ddd +1,ddd,z j)],

(Gddd)2 =


P̄[−(2ddd +3,2ddd−1,1)]ddd

⊕
⊕

1≤ j<k≤4
P̄[−(2ddd +2,2ddd,z j + zk)]

ddd+1

⊕ P̄[−(2ddd +1,2ddd +1,0)]ddd+1,

(Gddd)i =


⊕

1≤ j<k<`≤4
P̄[−(2ddd + i−3

2 +3,2ddd + i−3
2 ,z j + zk + z`)]2ddd+1

⊕
⊕

1≤ j≤4 P̄[−(2ddd + i−1
2 +1,2ddd + i−1

2 ,z j)]
2ddd+1,

for i odd with 3≤ i, and

(Gddd)i =


P̄[−(2ddd + i−4

2 +4,2ddd + i−4
2 ,1)]2ddd+1

⊕
⊕

1≤ j<k≤4
P̄[−(2ddd + i−2

2 +2,2ddd + i−2
2 ,z j + zk)]

2ddd+1

⊕ P̄[−(2ddd + i
2 ,2ddd + i

2 ,0)]
2ddd+1,

for i even with 4≤ i.

Proof. We saw in (5.3.1) and in the proof of Corollary 7.3 that the group homo-
morphism αnnn,rrr : M→ Mnnn carries the M-homogeneous twists in Gddd to the Mnnn-
homogeneous twists in Gddd,nnn,rrr for all (nnn,rrr), as described in (1.1.1). This happens
even though in the proof of Corollary 7.3, we know the Mnnn-twists of Gddd,nnn,rrr; but we
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do not yet know the M-homogeneous twists of Gddd . Nonetheless, it is an easy exer-
cise to verify that the M-homogeneous twists for Gd that are listed in the statement
of Lemma 8.1 are carried by αnnn,rrr to the Mnnn-homogeneous twists for Gddd,nnn,rrr which
are listed in Theorem 4.1. It is clear that any given αnnn,rrr has a large kernel; but it
is also clear that the only twist from any Gddd which is in kernnn,rrr for all pairs (nnn,rrr) is
zero.

Indeed, suppose m is a twist from some Gddd , with m ∈ kernnn,rrr for all pairs (nnn,rrr)
which satisfy (1.1.1). Let M-degm = (c1,c2,c3,c4,c5,c6). Apply Data 1.3 to see
that

c̄3 = c̄4 = c̄5 = c̄6 = 0 in Z
nnnZ , for all nnn,

and

(8.1.1) rrrc1 +(nnn−rrr)c2 = 0 for all (nnn,rrr) satisfying (1.1.1).

It is immediately clear that c3 = c4 = c5 = c6 = 0 in Z. Now apply Lemma 8.2 to
see that c1 = c2. It follows from (8.1.1) that c1 = c2 = 0 in Z. �

Lemma 8.2. Adopt Data 1.3. Let m ∈M be a homogeneous twist which appears
in Gddd , for some non-negative integer ddd. The following statements hold.
(a) Either m is zero or there exists a non-zero homogeneous element θ ∈ P such

that the M-degree of θ is equal to m.
(b) If the M-degree of m is equal (c1,c2,c3,c4,c5,c6), then

c1 = c2 + c3 + c4 + c5 + c6.

Proof. We prove (a) by induction on the position of the twist m in the resolution
Gddd . The only twist that appears in G0 =P is zero.

If m appears in (Gddd)1, then the degree of m is equal to the degree of a minimal
generator of the ideal Cddd .

Suppose m is a twist from (Gddd)i, for some i with 2 ≤ i. In this case, m is the
M-degree of some basis element e in (Gddd)i. The resolution Gddd is a minimal M-
homogeneous resolution; so e is not sent to zero. Thus, dege = deg p+m′, for
some non-zero homogeneous element p ∈ P and some m′ which appears as an
M-homogeneous twist in (Gddd)i−1. By induction degm′ = deg p′ for some non-
zero M-homogeneous element p′ of P. Thus, pp′ is a non-zero M-homogeneous
element of P with degm = deg pp′. This completes the proof of (a).

We prove (b) by showing that each monomial in P satisfies the equation. If
p= ya1

1 ya2
2 ya3

3 ya4
4 wb1

1 wb2
2 wb3

3 wb4
4 is a monomial in P and deg p=(c1,c2,c3,c4,c5,c6),

then according to Data 1.3,

c1 = a1 +a2 +a3 +a4, c2 = b1 +b2 +b3 +b3 +b4, c3 = a1−b1, c4 = a2−b2,

c5 = a3−b3, c6 = a4−b4,

and it is clear that c2 + c3 + c4 + c5 + c6 = c1. �

Lemma 8.3. Adopt the data of 1.3. Then the differentials

(Gddd)5
g5−→ (Gddd)4

g4−→ (Gddd)3

have the form given in Table 5, where each Mi j and each Ni j is an invertible

(2ddd +1)× (2ddd +1)
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matrix of constants.

Proof. Decompose (Gddd)3 as

P̄[−(2ddd +3,2ddd,0,1,1,1)]2ddd+1⊕ P̄[−(2ddd +3,2ddd,1,0,1,1)]2ddd+1

⊕ P̄[−(2ddd +3,2ddd,1,1,0,1)]2ddd+1⊕ P̄[−(2ddd +3,2ddd,1,1,1,0)]2ddd+1

⊕ P̄[−(2ddd +2,2ddd +1,1,0,0,0)]2ddd+1⊕ P̄[−(2ddd +2,2ddd +1,0,1,0,0)]2ddd+1

⊕ P̄[−(2ddd +2,2ddd +1,0,0,1,0)]2ddd+1⊕ P̄[−(2ddd +2,2ddd +1,0,0,0,1)]2ddd+1,

(Gddd)4 as

P̄[−(2ddd +4,2ddd,1,1,1,1)]2ddd+1⊕ P̄[−(2ddd +3,2ddd +1,1,1,0,0)]2ddd+1

⊕ P̄[−(2ddd +3,2ddd +1,1,0,1,0)]2ddd+1⊕ P̄[−(2ddd +3,2ddd +1,1,0,0,1)]2ddd+1

⊕ P̄[−(2ddd +3,2ddd +1,0,0,1,1)]2ddd+1⊕ P̄[−(2ddd +3,2ddd +1,0,1,0,1)]2ddd+1

⊕ P̄[−(2ddd +3,2ddd +1,0,1,1,0)]2ddd+1⊕ P̄[−(2ddd +2,2ddd +2,0,0,0,0)]2ddd+1,

and (Gddd)5 as

P̄[−(2ddd +4,2ddd +1,0,1,1,1)]2ddd+1⊕ P̄[−(2ddd +4,2ddd +1,1,0,1,1)]2ddd+1

⊕ P̄[−(2ddd +4,2ddd +1,1,1,0,1)]2ddd+1⊕ P̄[−(2ddd +4,2ddd +1,1,1,1,0)]2ddd+1

⊕ P̄[−(2ddd +3,2ddd +2,1,0,0,0)]2ddd+1⊕ P̄[−(2ddd +3,2ddd +2,0,1,0,0)]2ddd+1

⊕ P̄[−(2ddd +3,2ddd +2,0,0,1,0)]2ddd+1⊕ P̄[−(2ddd +3,2ddd +2,0,0,0,1)]2ddd+1.

The only possible non-zero M-homogeneous maps

g5 : (Gddd)5→ (Gddd)4 and g4 : (Gddd)4→ (Gddd)3

have the form of the matrices in Table 5, for some matrices of constants Mi j and
Ni j. The matrices Mi j and Ni j are invertible for the same reason that the matrices of
Corollary 4.2 are invertible. If any of the Mi j or Ni j were singular, then f would be
an element of the ideal generated by three of the eight variables y1, . . . ,y4,w1, . . . ,w4
and this is not possible. �

Remark 8.4. In light of Theorem 7.5, the matrix Mi j from Table 2 is equal to the
matrix Mi j from Table 5 and the matrix Ni j from Table 2 is equal to the matrix Ni j
from Table 5.

9. ORDER IDEALS OF SYZYGIES.

We use the theory of order ideals (see, for example, [12, page 397]) to distinguish
the non-free indecomposable Maximal Cohen-Macaulay modules of the ring P̄ of
1.3.

If E is a module over the commutative ring R, then E∗ = HomR(E,R) represents
the R-dual of E.

Definition 9.1. Let R be a ring, and let E be an R-module. For e ∈ E, the ideal

OE(e) = {φ(e) | φ ∈ E∗}
is the order ideal of e in the module E.
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The differential g4 : (Gddd)4→ (Gddd)3 has the form
y1M11 0 0 0 w2M15 −w3M16 w4M17 0
−y2M21 0 w4M23 −w3M24 w1M25 0 0 0
y3M31 w4M32 0 −w2M34 0 w1M36 0 0
−y4M41 w3M42 −w2M43 0 0 0 w1M47 0

0 −y2M52 −y3M53 −y4M54 0 0 0 w1M58
0 y1M62 0 0 0 −y4M66 −y3M67 w2M68
0 0 y1M73 0 −y4M75 0 y2M77 w3M78
0 0 0 y1M84 y3M85 y2M86 0 w4M88

and the differential g5 : (Gddd)5→ (Gddd)4 has the form

w1N11 −w2N12 w3N13 −w4N14 0 0 0 0
0 0 y4N23 y3N24 −w2N25 w1N26 0 0
0 y4N32 0 −y2N34 −w3N35 0 w1N37 0
0 −y3N42 −y2N43 0 −w4N45 0 0 w1N48

y2N51 y1N52 0 0 0 0 −w4N57 w3N58
−y3N61 0 y1N63 0 0 −w4N66 0 w2N68
y4N71 0 0 y1N74 0 −w3N76 w2N77 0

0 0 0 0 y1N85 y2N86 y3N87 y4N88

TABLE 5. The differentials (Gddd)5
g5−→ (Gddd)4

g4−→ (Gddd)3, as de-
scribed in Lemma 8.3. The matrices we have recorded have entries
in P; the matrices g4 and g5 are the images of these matrices with
entries in P̄.

Notice that the notion of order ideal is intrinsic to the data e ∈ E. This notion
has nothing to do with how E is presented. On the other hand, when possible, it is
convenient to use information about the presentation of E to calculate order ideals.

Lemma 9.2. If R is a ring and α : E→ F is an injective R-module homomorphism
of finitely generated R-modules, with F free and α∗ : F∗→ E∗ surjective, then, for
each element e of E, the order ideal OE(e) is generated by the coordinates of α(e)
with respect to any basis for F.

Proof. Let u1, . . . ,un be an arbitrary basis for F . Define u∗1, . . . ,u
∗
n in F∗ by

u∗i (u j) =

{
1, if i = j, and
0, if i 6= j.

Observe that u∗1, . . . ,u
∗
n generate F∗. The hypothesis that α∗ is surjective ensures

that if φ is an element in E∗, then there exists Φ∈ F∗ such that φ = Φ◦α. It follows
that u∗1 ◦α, . . . ,u∗n ◦α is a generating set for E∗. Consequently, OE(e) is generated
by (u∗1 ◦α)(e), . . . ,(u∗n ◦α)(e); and therefore, OE(e) is generated by the coordinates
of α(e) with respect to the basis u1, . . . ,un for E∗. �

Observation 9.3. Let R be a Gorenstein ring and

· · · f0−→ F1
f1−→ F0

f0−→ F1
f1−→ F0

f0−→ ·· ·
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be a periodic exact sequence of finitely generated free R-modules. Then, for each
element e ∈ F0, the order ideal OIm f0 f0(e) is generated by the coordinates of f0(e)
with respect to any basis for F1. In particular, if F0 = ⊕ jRe0, j, F1 = ⊕ jRe1, j, and
the maps f0 and f1 are the corresponding matrices, then OIm( f0) f0(e0, j) is the ideal
of R generated by the entries of column j of the matrix f0 and OIm( f1) f1(e1, j) is the
ideal of R generated by the entries of column j of the matrix f1.

Remark. We view an element of F1 as a column vector v. The homomorphism

f1 : F1→ F0

sends the column vector v to the column vector f1v, which is the product of the
matrix f1 and the column vector v.

Proof. The R-module f1(F1) is an ith syzygy module for all non-negative integers i;
hence, f1(F1) is an MCM R-module. It follows from local duality (and the fact that
the canonical module of R is R) that Ext j

R( f1(F1),R) = 0 for all positive integers j;
see, for example, [3, Cor. 3.5.11]. Apply HomR(−,R) to the short exact sequence

0→ f0(F0)
incl−−→ F1→ f1(F1)→ 0

to obtain the exact sequence

F∗1
incl∗−−→ ( f0(F0))

∗→ Ext1R( f1(F1),R) = 0.

The assertion is now a special case of Lemma 9.2. �

Definition 9.4. Retain the usual M-homogeneous kkk-algebra P̄ from 1.3. Let m
be the maximal M-homogeneous ideal of P̄; so that P̄/m = kkk. If E is a finitely
generated M-homogeneous P̄-module, then define

λ(E) = max
{

dimkkk

(
E ′+mE
mE

)∣∣∣∣ E ′ is a P̄-submodule of E and
e′ ∈ E ′ =⇒ OE(e′)⊆ (ȳ1, ȳ2, ȳ3, ȳ4)

}
.

Observation 9.5. Recall the matrices A and B from Table 4 on page 6 and the
matrix g4 from Table 5 on page 25. The following statements hold:
(a) λ(Im Ā) = 1,
(b) λ(ImB̄) = 0,
(c) λ(P̄) = 0,
(d) λ((Im Ā)a⊕ (ImB̄)b⊕ P̄c) = a, and
(e) λ(Img4) = 2ddd +1.

Proof. We prove (a). Let the domain of Ā be called
⊕8

i=1 P̄e0,i. Apply Observa-
tion 9.3 to see that OIm Ā(Ā(e0,1)) = (ȳ1, ȳ2, ȳ3, ȳ4); but

OIm Ā(Ā(e)) 6⊆ (ȳ1, ȳ2, ȳ3, ȳ4),

for any minimal generator e of
⊕8

i=2 P̄e0,i.
(b) In a similar manner, we see that

OImB̄(B̄(e)) 6⊆ (ȳ1, ȳ2, ȳ3, ȳ4),

for any e ∈ P̄8 \m(P̄8).
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(c) If e ∈ P̄\mP̄, then OP̄(e) = P̄, which is not contained in (ȳ1, ȳ2, ȳ3, ȳ4); hence,
λ(P̄) = 0.
(d) This assertion is a consequence of (a), (b), and (c).

(e) Let the domain of g4 be
16ddd+8⊕

i=1
P̄ei and let W =

16ddd+8⊕
i=2d+2

P̄ei. Apply Observa-

tion 9.3 to see that
OIm(g4)(g4(ei)) = (ȳ1, ȳ2, ȳ3, ȳ4), for 1≤ i≤ 2ddd +1; but
OIm(g4)(g4(e)) 6⊆ (ȳ1, ȳ2, ȳ3, ȳ4), for any e ∈W \mW .

(Keep in mind that each matrix Mi j from Table 5 is invertible.) We conclude that
λ(Img4) = 2ddd +1. �

10. THE MAIN RESULT.

Corollary 10.2 is the main result of the paper. It establishes Conjecture 1.2.

Theorem 10.1. Let kkk be a field of characteristic zero, ddd be a positive integer, P be
the polynomial ring

P= kkk[y1,y2,y3,y4,w1,w2,w3,w4],

f be the polynomial
f= y1w1 + y2w2 + y3w3 + y4w4

in P, P̄ be the hypersurface ring P/(f), Cddd be the ideal

Cddd = (yddd+1
1 wddd

1, yddd+1
2 wddd

2, yddd+1
3 wddd

3, yddd+1
4 wddd

4)

of P, Qddd be the quotient ring

Qddd = P̄/CdddP̄,

and S3
ddd be the third syzygy of Qddd as a P̄-module. Then

S3
ddd
∼= (ImB)2ddd+1,

where B is given in Table 4 on page 6.

Proof. Recall from Theorem 6.2 that the ideal Iddd = (Cddd, f) of P is perfect ideal of
grade 4; hence P/Iddd , which is equal to Qddd , is a Cohen-Macaulay ring of dimension
4. In particular, if 3≤ i, then the ith syzygy of Qddd as a P̄-module (denoted Si

ddd) has
depth 7 and therefore is a maximal Cohen-Macaulay P̄-module.

It is shown in [6, Prop. 3.1] that there are at most two isomorphism classes of
non-free indecomposable maximal Cohen-Macaulay (MCM) P̄-modules. Indeed,
it is observed in [7, Remark 2.5.4] that there are exactly two non-isomorphic, in-
decomposable, non-free MCM P̄-modules and these modules have rank 4 as P̄-
modules. (The ring P̄ is a domain; see for example, [15, Prop. 22]. The rank of
a P̄-module M is the vector space dimension of K⊗P̄ M, where K is the quotient
field of P̄.) In particular, these MCM P̄-modules are ImB̄ and Im Ā, where B and
A are 8×8 matrices with entries from P with AB= fI8.

At any rate,
fI8 = AB and fI8 =BA,
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for A and B as given in Table 4 on page 6, and every non-free indecomposable
MCM P̄-module is isomorphic to Im Ā or ImB̄. The fourth syzygy, S4

ddd , of the
P̄-module Qd is a MCM P̄-module; consequently,

S4
ddd
∼= (Im Ā)a⊕ (ImB̄)b⊕ P̄c,

for some non-negative integers a, b, and c. Notice that the minimal number of
generators of S4

ddd is 8a+8b+ c.
On the other hand, it is shown in Lemma 8.3 that S4

ddd is equal to Img4. In particu-
lar, the minimal number of generators of S4

ddd is 8(2ddd+1). Apply Observation 9.5.(d)
and (e) to see that

a = λ((Im Ā)a⊕ (ImB̄)b⊕ P̄c) = λ(S4
ddd) = λ(Img4) = 2ddd +1,

with
8a+8b+ c = 8(2ddd +1)

to conclude that a = 2ddd +1 and b = c = 0. Thus,

(10.1.1) S4
ddd = (Im Ā)2ddd+1.

We apply standard tricks involving MCM modules to show that in fact

S3
ddd
∼= (ImB̄)2ddd+1.

Indeed, the P̄-dual of the short exact sequence

0→S4
ddd →G4→S3

ddd → 0

is

(10.1.2) 0→ (S3
ddd)
∗→ (G4)

∗→ (S4
ddd)
∗→ 0

because Ext1
P̄
(S3

ddd,P̄) = 0 by local duality. But,

(S4
ddd)
∗ ∼= ((Im Ā)2ddd+1)∗ ∼= (ImB̄)2ddd+1.

(The equality on the left is (10.1.1) and the equality on the right is obvious.) The
complex (10.1.2) is M-homogeneous and the minimal first syzygy of ImB̄ is Im Ā.
Thus, (S3

ddd)
∗ ∼= (Im Ā)2ddd+1. The MCM P̄-module S3

ddd is reflexive; thus:

S3
ddd
∼= (S3

ddd)
∗∗ ∼= ((Im Ā)2ddd+1)∗ ∼= ((Im Ā)∗)2ddd+1 = Im(B̄)2ddd+1.

�

Corollary 10.2. Let kkk be a field of characteristic zero, and nnn, ddd, and rrr be non-
negative integers with 1≤ rrr≤nnn−1. Let N be the integer dddnnn+rrr, P be the polynomial
ring kkk[x1,x2,x3,x4], fnnn be the polynomial xnnn

1 + xnnn
2 + xnnn

3 + xnnn
4 in P, Cddd,nnn,rrr be the ideal

(xN
1 ,x

N
2 ,x

N
3 ,x

N
4 ) of P, P̄nnn be the hypersurface ring P/( fnnn), Qddd,nnn,rrr be the quotient ring

P̄nnn/Cddd,nnn,rrrP̄nnn and Ω3
ddd,nnn,rrr be the third syzygy module of Qddd,nnn,rrr as a P̄nnn-module. Then

Ω3
ddd,nnn,rrr is isomorphic to the direct sum of 2ddd +1 copies of Ω3

0,nnn,rrr.
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Proof. Consider the rings P̄ and Qddd = P̄/CdddP̄ of Theorem 10.1. Let (Gddd,g) be
the minimal M-homogeneous resolution of Qddd by free P̄-modules. We learned in
Theorem 10.1 that Im(g3)∼= (ImB̄)2ddd+1. We learned in Theorem 7.5 that Gddd⊗P̄ P
is the minimal Mnnn homogeneous resolution of Pddd,nnn,rrr by free P̄nnn-modules. Thus,

Ω
3
ddd,nnn,rrr
∼= Im(g3⊗P̄ P̄nnn)∼= (Im(B̄⊗P̄ P̄nnn))

2ddd+1 = (Im B̄)2ddd+1.

The final equality holds because ∆nnn,rrr(B̄) = B̄. �

11. THE CASE ddd = 0.

This brief section was promised in the introduction. We include enough informa-
tion to demonstrate that if A is the matrix of Table 1, on page 3, then Ā presents the
third syzygy of the P̄nnn-module Q0,nnn,rrr, in the language of (1.1.2).

The two-step Tate resolution which appears in Observation 11.1 is well-known;
see, for example, [29, Thm. 4], [23], or [11].

Observation 11.1. Adopt Data 1.1 with ddd = 0 and kkk an arbitrary field. Let E and
T be vector spaces over kkk of dimension 4 and 1, respectively. Let ε1,ε2,ε3,ε4 be a
basis for E and t be a basis for T . Define kkk-module maps

∂ : E→ P and ∂ : T → P⊗kkk E

by ∂(εi) = xrrr
i and ∂(t) =

4
∑

i=1
xnnn−rrr

i εi. Then the minimal homogeneous resolution of Q

by free P̄-modules is given by G0,nnn,rrr = P̄〈ε1,ε2,ε3,ε4, t;∂〉, where G0,nnn,rrr is the free
Differential Graded P̄-algebra with variables {εi} of degree one and t of degree two
and ∂ is the differential on G0,nnn,rrr. In other words, (G0,nnn,rrr) j is

P̄, if j = 0,

P̄⊗E, if j = 1,

(P̄⊗kkk D0T ⊗kkk
∧2 E)⊕ (P̄⊗kkk D1T ⊗kkk

∧0 E), if j = 2,

(P̄⊗kkk Di−1T ⊗kkk
∧3 E)⊕ (P̄⊗kkk DiT ⊗kkk

∧1 E), if 3≤ j and j = 2i+1,

and{
(P̄⊗kkk Di−2T ⊗kkk

∧4 E)⊕ (P̄⊗kkk Di−1T ⊗kkk
∧2 E)

⊕(P̄⊗kkk DiT ⊗kkk
∧0 E),

if 4≤ j and j = 2i.

Use the ordered bases

t(i−1)
ε1ε2ε3ε4, t(i)ε1ε2, t(i)ε1ε3, t(i)ε1ε4, t(i)ε3ε4,

t(i)ε2ε4, t(i)ε2ε3, t(i+1)

for (G0,nnn,rrr)2i+2;

t(i−1)
ε2ε3ε4, t(i−1)

ε1ε3ε4, t(i−1)
ε1ε2ε4, t(i−1)

ε1ε2ε3, t(i)ε1,

t(i)ε2, t(i)ε3, t(i)ε4
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for (G0,nnn,rrr)2i+1; and

t(i−2)
ε1ε2ε3ε4, t(i−1)

ε1ε2, t(i−1)
ε1ε3, t(i−1)

ε1ε4, t(i−1)
ε3ε4,

t(i−1)
ε2ε4, t(i−1)

ε2ε3, t(i)

for (G0,nnn,rrr)2i. The matrix for (G0,nnn,rrr)2i+2→ (G0,nnn,rrr)2i+1, when 1≤ i, is Ā, for A as
given in Table 1; and the matrix (G0,nnn,rrr)2i+1→ (G0,nnn,rrr)2i, for 2 ≤ i, is B̄, for B as
given in Table 1.

Remark. The matrix for the differential ḡ3 : (G0,nnn,rrr)3→ (G0,nnn,rrr)2 is obtained from
B by deleting row 1; nonetheless, the P̄nnn-modules Im B̄ and Im ḡ3 are isomorphic as
the commutative diagram with exact rows

P̄8
nnn

Ā // P̄8
nnn

B̄ // Im B̄ //

π

��

0

P̄8
nnn

Ā // P̄8
nnn

ḡ3 // Im ḡ3 // 0

demonstrates, where π is induced by the homomorphism P̄8
nnn → P̄7

nnn which deletes
the top entry.

12. THE MATRICES FROM Lddd,nnn,rrr AND Lddd FROM THEOREMS 6.1 AND 6.2.

The complexes Lddd,nnn,rrr and Lddd are described in Theorems 6.1 and 6.2. In this sec-
tion, we give the precise form of the differentials which appear in these complexes.

12.1. The key to the notation in Tables 6–20. For each three tuple of parame-
ters (a,b,c), let ta,b,c = ( fi, j) be a b× c matrix. The entry fi j in row i and col-
umn j of ta,b,c is a homogeneous polynomial of degree a in the polynomial ring
kkk[ξ1,ξ2,ξ3,ξ4]. We use T a,b,c to denote the matrix ( fi, j(xnnn

1,x
nnn
2,x

nnn
3,x

nnn
4)) and Ta,b,c to

denote the matrix ( fi, j(y1w1,y2w2,y3w3,y4w4)). (In other words, the entry of ta,b,c

in position i, j is the polynomial fi, j evaluated at the (place-holder) variables ξ1,
ξ2, ξ3, ξ4; the entry of T a,b,c in position i, j is the polynomial fi, j evaluated at xnnn

1,
xnnn

2, xnnn
3, xnnn

4; and the entry of Ta,b,c in position i, j is the polynomial fi, j evaluated at
y1w1, y2w2, y3w3, y4w4.) We use subscripts to distinguish the various matrices. In
particular, the matrix T a,b,c

π,σ,τ appears in row σ and column τ of the matrix for the
differential in position π.

Notice that we make no claim about the polynomial fi, j(ξ1,ξ2,ξ3,ξ4) that ap-
pears in row i and column j of the matrix ta,b,c other than the fact that it is homoge-
neous of degree a.
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P(−m(1,0,0,0,0))
1 P(−m(ddd,rrr,0,0,0))

1 P(−m(ddd,0,rrr,0,0))
1 P(−m(ddd,0,0,rrr,0))

1 P(−m(ddd,0,0,0,rrr))
1

P T 1,1,1
1,1,1 xrrr

1Tddd,1,1
1,1,2 xrrr

2Tddd,1,1
1,1,3 xrrr

3Tddd,1,1
1,1,4 xrrr

4Tddd,1,1
1,1,5

TABLE 6. The matrix for (`ddd,nnn,rrr)1.

1 2 3 4 5 6
P(−m(ddd+1,rrrz1)) P(−m(ddd+1,rrrz2)) P(−m(ddd+1,rrrz3)) P(−m(ddd+1,rrrz4)) P(−m(2ddd−1,rrr))

ddd P(−m(2ddd,rrrz1+rrrz2))
ddd+1

P(−m(1,0))
1 xrrr

1Tddd,1,1
2,1,1 xrrr

2Tddd,1,1
2,1,2 xrrr

3Tddd,1,1
2,1,3 xrrr

4Tddd,1,1
2,1,4 xrrr

1xrrr
2xrrr

3xrrr
4T 2ddd−2,1,ddd

2,1,5 xrrr
1xrrr

2T 2ddd−1,1,ddd+1
2,1,6

P(−m(ddd,rrrz1))
1 T 1,1,1

2,2,1 xnnn−rrr
1 xrrr

2T 0,1,1
2,2,2 xnnn−rrr

1 xrrr
3T 0,1,1

2,2,3 xnnn−rrr
1 xrrr

4T 0,1,1
2,2,4 xrrr

2xrrr
3xrrr

4Tddd−1,1,ddd
2,2,5 xrrr

2Tddd,1,ddd+1
2,2,6

P(−m(ddd,rrrz2))
1 xrrr

1xnnn−rrr
2 T 0,1,1

2,3,1 T 1,1,1
2,3,2 xnnn−rrr

2 xrrr
3T 0,1,1

2,3,3 xnnn−rrr
2 xrrr

4T 0,1,1
2,3,4 xrrr

1xrrr
3xrrr

4Tddd−1,1,ddd
2,3,5 xrrr

1Tddd,1,ddd+1
2,3,6

P(−m(ddd,rrrz3))
1 xrrr

1xnnn−rrr
3 T 0,1,1

2,4,1 xrrr
2xnnn−rrr

3 T 0,1,1
2,4,2 T 1,1,1

2,4,3 xnnn−rrr
3 xrrr

4T 0,1,1
2,4,4 xrrr

1xrrr
2xrrr

4Tddd−1,1,ddd
2,4,5 xrrr

1xrrr
2xnnn−rrr

3 Tddd−1,1,ddd+1
2,4,6

P(−m(ddd,rrrz4))
1 xrrr

1xnnn−rrr
4 T 0,1,1

2,5,1 xrrr
2xnnn−rrr

4 T 0,1,1
2,5,2 xrrr

3xnnn−rrr
4 T 0,1,1

2,5,3 T 1,1,1
2,5,4 xrrr

1xrrr
2xrrr

3Tddd−1,1,ddd
2,5,5 xrrr

1xrrr
2xnnn−rrr

4 Tddd−1,1,ddd+1
2,5,6

TABLE 7. The left side of the matrix for (`ddd,nnn,rrr)2.
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7 8 9 10 11 12
P(−m(2ddd,rrrz1+rrrz3))

ddd+1 P(−m(2ddd,rrrz1+rrrz4))
ddd+1 P(−m(2ddd,rrrz2+rrrz3))

ddd+1 P(−m(2ddd,rrrz2+rrrz4))
ddd+1 P(−m(2ddd,rrrz3+rrrz4))

ddd+1 P(−m(2ddd+1,0))
ddd+1

1 xrrr
1xrrr

3T 2ddd−1,1,ddd+1
2,1,7 xrrr

1xrrr
4T 2ddd−1,1,ddd+1

2,1,8 xrrr
2xrrr

3T 2ddd−1,1,ddd+1
2,1,9 xrrr

2xrrr
4T 2ddd−1,1,ddd+1

2,1,10 xrrr
3xrrr

4T 2ddd−1,1,ddd+1
2,1,11 T 2ddd,1,ddd+1

2,1,12

2 xrrr
3Tddd,1,ddd+1

2,2,7 xrrr
4Tddd,1,ddd+1

2,2,8 xnnn−rrr
1 xrrr

2xrrr
3Tddd−1,1,ddd+1

2,2,9 xnnn−rrr
1 xrrr

2xrrr
4Tddd−1,1,ddd+1

2,2,10 xnnn−rrr
1 xrrr

3xrrr
4Tddd−1,1,ddd+1

2,2,11 xnnn−rrr
1 Tddd,1,ddd+1

2,2,12

3 xrrr
1xnnn−rrr

2 xrrr
3Tddd−1,1,ddd+1

2,3,7 xrrr
1xnnn−rrr

2 xrrr
4Tddd−1,1,ddd+1

2,3,8 xrrr
3Tddd,1,ddd+1

2,3,9 xrrr
4Tddd,1,ddd+1

2,3,10 xnnn−rrr
2 xrrr

3xrrr
4Tddd−1,1,ddd+1

2,3,11 xnnn−rrr
2 Tddd,1,ddd+1

2,3,12

4 xrrr
1Tddd,1,ddd+1

2,4,7 xrrr
1xnnn−rrr

3 xrrr
4Tddd−1,1,ddd+1

2,4,8 xrrr
2Tddd,1,ddd+1

2,4,9 xrrr
2xnnn−rrr

3 xrrr
4Tddd−1,1,ddd+1

2,4,10 xrrr
4Tddd,1,ddd+1

2,4,11 xnnn−rrr
3 Tddd,1,ddd+1

2,4,12

5 xrrr
1xrrr

3xnnn−rrr
4 Tddd−1,1,ddd+1

2,5,7 xrrr
1Tddd,1,ddd+1

2,5,8 xrrr
2xrrr

3xnnn−rrr
4 Tddd−1,1,ddd+1

2,5,9 xrrr
2Tddd,1,ddd+1

2,5,10 xrrr
3Tddd,1,ddd+1

2,5,11 xnnn−rrr
4 Tddd,1,ddd+1

2,5,12

TABLE 8. The right side of the matrix for (`ddd,nnn,rrr)2.
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1 2 3 4
P(−m(2ddd+1,rrrz1))

2ddd+1 P(−m(2ddd+1,rrrz2))
2ddd+1 P(−m(2ddd+1,rrrz3))

2ddd+1 P(−m(2ddd+1,rrrz4))
2ddd+1

1 P(−m(ddd+1,rrrz1)) Tddd,1,2ddd+1
3,1,1 xnnn−rrr

1 xrrr
2Tddd−1,1,2ddd+1

3,1,2 xnnn−rrr
1 xrrr

3Tddd−1,1,2ddd+1
3,1,3 xnnn−rrr

1 xrrr
4Tddd−1,1,2ddd+1

3,1,4

2 P(−m(ddd+1,rrrz2)) xrrr
1xnnn−rrr

2 Tddd−1,1,2ddd+1
3,2,1 Tddd,1,2ddd+1

3,2,2 xnnn−rrr
2 xrrr

3Tddd−1,1,2ddd+1
3,2,3 xnnn−rrr

2 xrrr
4Tddd−1,1,2ddd+1

3,2,4

3 P(−m(ddd+1,rrrz3)) xrrr
1xnnn−rrr

3 Tddd−1,1,2ddd+1
3,3,1 xrrr

2xnnn−rrr
3 Tddd−1,1,2ddd+1

3,3,2 Tddd,1,2ddd+1
3,3,3 xnnn−rrr

3 xrrr
4Tddd−1,1,2ddd+1

3,3,4

4 P(−m(ddd+1,rrrz4)) xrrr
1xnnn−rrr

4 Tddd−1,1,2ddd+1
3,4,1 xrrr

2xnnn−rrr
4 Tddd−1,1,2ddd+1

3,4,2 xrrr
3xnnn−rrr

4 Tddd−1,1,2ddd+1
3,4,3 Tddd,1,2ddd+1

3,4,4
5 P(−m(2ddd−1,rrr))

ddd 0 0 0 0
6 P(−m(2ddd,rrrz1+rrrz2))

ddd+1 xnnn−rrr
2 T 0,ddd+1,2ddd+1

3,6,1 xnnn−rrr
1 T 0,ddd+1,2ddd+1

3,6,2 0 0

7 P(−m(2ddd,rrrz1+rrrz3))
ddd+1 xnnn−rrr

3 T 0,ddd+1,2ddd+1
3,7,1 0 xnnn−rrr

1 T 0,ddd+1,2ddd+1
3,7,3 0

8 P(−m(2ddd,rrrz1+rrrz4))
ddd+1 xnnn−rrr

4 T 0,ddd+1,2ddd+1
3,8,1 0 0 xnnn−rrr

1 T 0,ddd+1,2ddd+1
3,8,4

9 P(−m(2ddd,rrrz2+rrrz3))
ddd+1 0 xnnn−rrr

3 T 0,ddd+1,2ddd+1
3,9,2 xnnn−rrr

2 T 0,ddd+1,2ddd+1
3,9,3 0

10 P(−m(2ddd,rrrz2+rrrz4))
ddd+1 0 xnnn−rrr

4 T 0,ddd+1,2ddd+1
3,10,2 0 xnnn−rrr

2 T 0,ddd+1,2ddd+1
3,10,4

11 P(−m(2ddd,rrrz3+rrrz4))
ddd+1 0 0 xnnn−rrr

4 T 0,ddd+1,2ddd+1
3,11,3 xnnn−rrr

3 T 0,ddd+1,2ddd+1
3,11,4

12 P(−m(2ddd+1,0))
ddd+1 xrrr

1T 0,ddd+1,2ddd+1
3,12,1 xrrr

2T 0,ddd+1,2ddd+1
3,12,2 xrrr

3T 0,ddd+1,2ddd+1
3,12,3 xrrr

4T 0,ddd+1,2ddd+1
3,12,4

TABLE 9. The left side of the matrix for (`ddd,nnn,rrr)3.
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5 6 7 8
P(−m(2ddd,0,rrr,rrr,rrr))

2ddd+1 P(−m(2ddd,rrr,0,rrr,rrr))
2ddd+1 P(−m(2ddd,rrr,rrr,0,rrr))

2ddd+1 P(−m(2ddd,rrr,rrr,rrr,0))
2ddd+1

1 xnnn−rrr
1 xrrr

2xrrr
3xrrr

4Tddd−2,1,2ddd+1
3,1,5 xrrr

3xrrr
4Tddd−1,1,2ddd+1

3,1,6 xrrr
2xrrr

4Tddd−1,1,2ddd+1
3,1,7 xrrr

2xrrr
3Tddd−1,1,2ddd+1

3,1,8

2 xrrr
3xrrr

4Tddd−1,1,2ddd+1
3,2,5 xrrr

1xnnn−rrr
2 xrrr

3xrrr
4Tddd−2,1,2ddd+1

3,2,6 xrrr
1xrrr

4Tddd−1,1,2ddd+1
3,2,7 xrrr

1xrrr
3Tddd−1,1,2ddd+1

3,2,8

3 xrrr
2xrrr

4Tddd−1,1,2ddd+1
3,3,5 xrrr

1xrrr
4Tddd−1,1,2ddd+1

3,3,6 xrrr
1xrrr

2xnnn−rrr
3 xrrr

4Tddd−2,1,2ddd+1
3,3,7 xrrr

1xrrr
2Tddd−1,1,2ddd+1

3,3,8

4 xrrr
2xrrr

3Tddd−1,1,2ddd+1
3,4,5 xrrr

1xrrr
3Tddd−1,1,2ddd+1

3,4,6 xrrr
1xrrr

2Tddd−1,1,2ddd+1
3,4,7 xrrr

1xrrr
2xrrr

3xnnn−rrr
4 Tddd−2,1,2ddd+1

3,4,8

5 xnnn−rrr
1 T 0,ddd,2ddd+1

3,5,5 xnnn−rrr
2 T 0,ddd,2ddd+1

3,5,6 xnnn−rrr
3 T 0,ddd,2ddd+1

3,5,7 xnnn−rrr
4 T 0,ddd,2ddd+1

3,5,8

6 0 0 xrrr
4T 0,ddd+1,2ddd+1

3,6,7 xrrr
3T 0,ddd+1,2ddd+1

3,6,8

7 0 xrrr
4T 0,ddd+1,2ddd+1

3,7,6 0 xrrr
2T 0,ddd+1,2ddd+1

3,7,8

8 0 xrrr
3T 0,ddd+1,2ddd+1

3,8,6 xrrr
2T 0,ddd+1,2ddd+1

3,8,7 0

9 xrrr
4T 0,ddd+1,2ddd+1

3,9,5 0 0 xrrr
1T 0,ddd+1,2ddd+1

3,9,8

10 xrrr
3T 0,ddd+1,2ddd+1

3,10,5 0 xrrr
1T 0,ddd+1,2ddd+1

3,10,7 0

11 xrrr
2T 0,ddd+1,2ddd+1

3,11,5 xrrr
1T 0,ddd+1,2ddd+1

3,11,6 0 0
12 0 0 0 0

TABLE 10. The right side of the matrix for (`ddd,nnn,rrr)3.
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1 2 3 4
P(−m(2ddd+2,0))

ddd P(−m(2ddd+1,rrr,rrr,0,0))
ddd P(−m(2ddd+1,rrr,0,rrr,0))

ddd P(−m(2ddd+1,rrr,0,0,rrr))
ddd

1 P(−m(2ddd+1,rrrz1))
2ddd+1 xnnn−rrr

1 T 0,2ddd+1,ddd
4,1,1 xrrr

2T 0,2ddd+1,ddd
4,1,2 xrrr

3T 0,2ddd+1,ddd
4,1,3 xrrr

4T 0,2ddd+1,ddd
4,1,4

2 P(−m(2ddd+1,rrrz2))
2ddd+1 xnnn−rrr

2 T 0,2ddd+1,ddd
4,2,1 xrrr

1T 0,2ddd+1,ddd
4,2,2 0 0

3 P(−m(2ddd+1,rrrz3))
2ddd+1 xnnn−rrr

3 T 0,2ddd+1,ddd
4,3,1 0 xrrr

1T 0,2ddd+1,ddd
4,3,3 0

4 P(−m(2ddd+1,rrrz4))
2ddd+1 xnnn−rrr

4 T 0,2ddd+1,ddd
4,4,1 0 0 xrrr

1T 0,2ddd+1,ddd
4,4,4

5 P(−m(2ddd,0,rrr,rrr,rrr))
2ddd+1 0 0 0 0

6 P(−m(2ddd,rrr,0,rrr,rrr))
2ddd+1 0 0 xnnn−rrr

4 T 0,2ddd+1,ddd
4,6,3 xnnn−rrr

3 T 0,2ddd+1,ddd
4,6,4

7 P(−m(2ddd,rrr,rrr,0,rrr))
2ddd+1 0 xnnn−rrr

4 T 0,2ddd+1,ddd
4,7,2 0 xnnn−rrr

2 T 0,2ddd+1,ddd
4,7,4

8 P(−m(2ddd,rrr,rrr,rrr,0))
2ddd+1 0 xnnn−rrr

3 T 0,2ddd+1,ddd
4,8,2 xnnn−rrr

2 T 0,2ddd+1,ddd
4,8,3 0

TABLE 11. The left side of the matrix for (`ddd,nnn,rrr)4.
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5 6 7 8
P(−m(2ddd+1,0,rrr,rrr,0))

ddd P(−m(2ddd+1,0,rrr,0,rrr))
ddd P(−m(2ddd+1,0,0,rrr,rrr))

ddd P(−m(2ddd,rrr))
ddd+1

1 0 0 0 0
2 xrrr

3T 0,2ddd+1,ddd
4,2,5 xrrr

4T 0,2ddd+1,ddd
4,2,6 0 0

3 xrrr
2T 0,2ddd+1,ddd

4,3,5 0 xrrr
4T 0,2ddd+1,ddd

4,3,7 0

4 0 xrrr
2T 0,2ddd+1,ddd

4,4,6 xrrr
3T 0,2ddd+1,ddd

4,4,7 0

5 xnnn−rrr
4 T 0,2ddd+1,ddd

4,5,5 xnnn−rrr
3 T 0,2ddd+1,ddd

4,5,6 xnnn−rrr
2 T 0,2ddd+1,ddd

4,5,7 xrrr
1T 0,2ddd+1,ddd+1

4,5,8

6 0 0 xnnn−rrr
1 T 0,2ddd+1,ddd

4,6,7 xrrr
2T 0,2ddd+1,ddd+1

4,6,8

7 0 xnnn−rrr
1 T 0,2ddd+1,ddd

4,7,6 0 xrrr
3T 0,2ddd+1,ddd+1

4,7,8

8 xnnn−rrr
1 T 0,2ddd+1,ddd

4,8,5 0 0 xrrr
4T 0,2ddd+1,ddd+1

4,8,8

TABLE 12. The right side of the matrix for (`ddd,nnn,rrr)4.
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P(−(1,1,0))1 P(−(ddd +1,ddd,z1))
1 P(−(ddd +1,ddd,z2))

1 P(−(ddd +1,ddd,z3))
1 P(−(ddd +1,ddd,z4))

1

P T1,1,1
1,1,1 y1T

ddd,1,1
1,1,2 y2T

ddd,1,1
1,1,3 y3T

ddd,1,1
1,1,4 y4T

ddd,1,1
1,1,5

TABLE 13. The matrix for (lddd)1.

1 2 3 4
P(−(ddd +2,ddd +1,z1)) P(−(ddd +2,ddd +1,z2)) P(−(ddd +2,ddd +1,z3)) P(−(ddd +2,ddd +1,z4))

1 P(−(1,1,0))1 y1T
ddd,1,1
2,1,1 y2T

ddd,1,1
2,1,2 y3T

ddd,1,1
2,1,3 y4T

ddd,1,1
2,1,4

2 P(−(ddd +1,ddd,z1))
1 T1,1,1

2,2,1 w1y2T
0,1,1
2,2,2 w1y3T

0,1,1
2,2,3 w1y4T

0,1,1
2,2,4

3 P(−(ddd +1,ddd,z2))
1 y1w2T

0,1,1
2,3,1 T1,1,1

2,3,2 w2y3T
0,1,1
2,3,3 w2y4T

0,1,1
2,3,4

4 P(−(ddd +1,ddd,z3))
1 y1w3T

0,1,1
2,4,1 y2w3T

0,1,1
2,4,2 T1,1,1

2,4,3 w3y4T
0,1,1
2,4,4

5 P(−(ddd +1,ddd,z4))
1 y1w4T

0,1,1
2,5,1 y2w4T

0,1,1
2,5,2 y3w4T

0,1,1
2,5,3 T1,1,1

2,5,4

TABLE 14. The left side of the matrix for (lddd)2.
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5 6 7 8
P(−(2ddd +3,2ddd−1,1))ddd P(−(2ddd +2,2ddd,z1 + z2))

ddd+1 P(−(2ddd +2,2ddd,z1 + z3))
ddd+1 P(−(2ddd +2,2ddd,z1 + z4))

ddd+1

1 y1y2y3y4T
2ddd−2,1,ddd
2,1,5 y1y2T

2ddd−1,1,ddd+1
2,1,6 y1y3T

2ddd−1,1,ddd+1
2,1,7 y1y4T

2ddd−1,1,ddd+1
2,1,8

2 y2y3y4T
ddd−1,1,ddd
2,2,5 y2T

ddd,1,ddd+1
2,2,6 y3T

ddd,1,ddd+1
2,2,7 y4T

ddd,1,ddd+1
2,2,8

3 y1y3y4T
ddd−1,1,ddd
2,3,5 y1T

ddd,1,ddd+1
2,3,6 y1w2y3T

ddd−1,1,ddd+1
2,3,7 y1w2y4T

ddd−1,1,ddd+1
2,3,8

4 y1y2y4T
ddd−1,1,ddd
2,4,5 y1y2w3T

ddd−1,1,ddd+1
2,4,6 y1T

ddd,1,ddd+1
2,4,7 y1w3y4T

ddd−1,1,ddd+1
2,4,8

5 y1y2y3T
ddd−1,1,ddd
2,5,5 y1y2w4T

ddd−1,1,ddd+1
2,5,6 y1y3w4T

ddd−1,1,ddd+1
2,5,7 y1T

ddd,1,ddd+1
2,5,8

TABLE 15. The middle of the matrix for (lddd)2.

9 10 11 12
P(−(2ddd +2,2ddd,z2 + z3))

ddd+1 P(−(2ddd +2,2ddd,z2 + z4))
ddd+1 P(−(2ddd +2,2ddd,z3 + z4))

ddd+1 P(−(2ddd +1,2ddd +1,0))ddd+1

1 y2y3T
2ddd−1,1,ddd+1
2,1,9 y2y4T

2ddd−1,1,ddd+1
2,1,10 y3y4T

2ddd−1,1,ddd+1
2,1,11 T2ddd,1,ddd+1

2,1,12

2 w1y2y3T
ddd−1,1,ddd+1
2,2,9 w1y2y4T

ddd−1,1,ddd+1
2,2,10 w1y3y4T

ddd−1,1,ddd+1
2,2,11 w1T

ddd,1,ddd+1
2,2,12

3 y3T
ddd,1,ddd+1
2,3,9 y4T

ddd,1,ddd+1
2,3,10 w2y3y4T

ddd−1,1,ddd+1
2,3,11 w2T

ddd,1,ddd+1
2,3,12

4 y2T
ddd,1,ddd+1
2,4,9 y2w3y4T

ddd−1,1,ddd+1
2,4,10 y4T

ddd,1,ddd+1
2,4,11 w3T

ddd,1,ddd+1
2,4,12

5 y2y3w4T
ddd−1,1,ddd+1
2,5,9 y2T

ddd,1,ddd+1
2,5,10 y3T

ddd,1,ddd+1
2,5,11 w4T

ddd,1,ddd+1
2,5,12

TABLE 16. The right side of the matrix for (lddd)2.
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1 2 3 4
P(−(2ddd +2,2ddd +1,z1))

2ddd+1 P(−(2ddd +2,2ddd +1,z2))
2ddd+1 P(−(2ddd +2,2ddd +1,z3))

2ddd+1 P(−(2ddd +2,2ddd +1,z4))
2ddd+1

1 P(−(ddd +2,ddd +1,z1)) Tddd,1,2ddd+1
3,1,1 w1y2T

ddd−1,1,2ddd+1
3,1,2 w1y3T

ddd−1,1,2ddd+1
3,1,3 w1y4T

ddd−1,1,2ddd+1
3,1,4

2 P(−(ddd +2,ddd +1,z2)) y1w2T
ddd−1,1,2ddd+1
3,2,1 Tddd,1,2ddd+1

3,2,2 w2y3T
ddd−1,1,2ddd+1
3,2,3 w2y4T

ddd−1,1,2ddd+1
3,2,4

3 P(−(ddd +2,ddd +1,z3)) y1w3T
ddd−1,1,2ddd+1
3,3,1 y2w3T

ddd−1,1,2ddd+1
3,3,2 Tddd,1,2ddd+1

3,3,3 w3y4T
ddd−1,1,2ddd+1
3,3,4

4 P(−(ddd +2,ddd +1,z4)) y1w4T
ddd−1,1,2ddd+1
3,4,1 y2w4T

ddd−1,1,2ddd+1
3,4,2 y3w4T

ddd−1,1,2ddd+1
3,4,3 Tddd,1,2ddd+1

3,4,4
5 P(−(2ddd +3,2ddd−1,1))ddd 0 0 0 0
6 P(−(2ddd +2,2ddd,z1 + z2))

ddd+1 w2T
0,ddd+1,2ddd+1
3,6,1 w1T

0,ddd+1,2ddd+1
3,6,2 0 0

7 P(−(2ddd +2,2ddd,z1 + z3))
ddd+1 w3T

0,ddd+1,2ddd+1
3,7,1 0 w1T

0,ddd+1,2ddd+1
3,7,3 0

8 P(−(2ddd +2,2ddd,z1 + z4))
ddd+1 w4T

0,ddd+1,2ddd+1
3,8,1 0 0 w1T

0,ddd+1,2ddd+1
3,8,4

9 P(−(2ddd +2,2ddd,z2 + z3))
ddd+1 0 w3T

0,ddd+1,2ddd+1
3,9,2 w2T

0,ddd+1,2ddd+1
3,9,3 0

10 P(−(2ddd +2,2ddd,z2 + z4))
ddd+1 0 w4T

0,ddd+1,2ddd+1
3,10,2 0 w2T

0,ddd+1,2ddd+1
3,10,4

11 P(−(2ddd +2,2ddd,z3 + z4))
ddd+1 0 0 w4T

0,ddd+1,2ddd+1
3,11,3 w3T

0,ddd+1,2ddd+1
3,11,4

12 P(−(2ddd +1,2ddd +1,0))ddd+1 y1T
0,ddd+1,2ddd+1
3,12,1 y2T

0,ddd+1,2ddd+1
3,12,2 y3T

0,ddd+1,2ddd+1
3,12,3 y4T

0,ddd+1,2ddd+1
3,12,4

TABLE 17. The left side of the matrix for (lddd)3.



40
A

.R
.K

U
ST

IN
,R

.R
.G

.,A
N

D
A

.V
R

A
C

IU

5 6 7 8
P(−(2ddd +3,2ddd,0,1,1,1))2ddd+1 P(−(2ddd +3,2ddd,1,0,1,1))2ddd+1 P(−(2ddd +3,2ddd,1,1,0,1))2ddd+1 P(−(2ddd +3,2ddd,1,1,1,0))2ddd+1

1 w1y2y3y4T
ddd−2,1,2ddd+1
3,1,5 y3y4T

ddd−1,1,2ddd+1
3,1,6 y2y4T

ddd−1,1,2ddd+1
3,1,7 y2y3T

ddd−1,1,2ddd+1
3,1,8

2 y3y4T
ddd−1,1,2ddd+1
3,2,5 y1w2y3y4T

ddd−2,1,2ddd+1
3,2,6 y1y4T

ddd−1,1,2ddd+1
3,2,7 y1y3T

ddd−1,1,2ddd+1
3,2,8

3 y2y4T
ddd−1,1,2ddd+1
3,3,5 y1y4T

ddd−1,1,2ddd+1
3,3,6 y1y2w3y4T

ddd−2,1,2ddd+1
3,3,7 y1y2T

ddd−1,1,2ddd+1
3,3,8

4 y2y3T
ddd−1,1,2ddd+1
3,4,5 y1y3T

ddd−1,1,2ddd+1
3,4,6 y1y2T

ddd−1,1,2ddd+1
3,4,7 y1y2y3w4T

ddd−2,1,2ddd+1
3,4,8

5 w1T
0,ddd,2ddd+1
3,5,5 w2T

0,ddd,2ddd+1
3,5,6 w3T

0,ddd,2ddd+1
3,5,7 w4T

0,ddd,2ddd+1
3,5,8

6 0 0 y4T
0,ddd+1,2ddd+1
3,6,7 y3T

0,ddd+1,2ddd+1
3,6,8

7 0 y4T
0,ddd+1,2ddd+1
3,7,6 0 y2T

0,ddd+1,2ddd+1
3,7,8

8 0 y3T
0,ddd+1,2ddd+1
3,8,6 y2T

0,ddd+1,2ddd+1
3,8,7 0

9 y4T
0,ddd+1,2ddd+1
3,9,5 0 0 y1T

0,ddd+1,2ddd+1
3,9,8

10 y3T
0,ddd+1,2ddd+1
3,10,5 0 y1T

0,ddd+1,2ddd+1
3,10,7 0

11 y2T
0,ddd+1,2ddd+1
3,11,5 y1T

0,ddd+1,2ddd+1
3,11,6 0 0

12 0 0 0 0

TABLE 18. The right side of the matrix for (lddd)3.
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1 2 3 4
P(−(2ddd +2,2ddd +2,0))ddd P(−(2ddd +3,2ddd +1,z1 + z2))

ddd P(−(2ddd +3,2ddd +1,z1 + z3))
ddd P(−(2ddd +3,2ddd +1,z1 + z4))

ddd

1 P(−(2ddd +2,2ddd +1,z1))
2ddd+1 w1T

0,2ddd+1,ddd
4,1,1 y2T

0,2ddd+1,ddd
4,1,2 y3T

0,2ddd+1,ddd
4,1,3 y4T

0,2ddd+1,ddd
4,1,4

2 P(−(2ddd +2,2ddd +1,z2))
2ddd+1 w2T

0,2ddd+1,ddd
4,2,1 y1T

0,2ddd+1,ddd
4,2,2 0 0

3 P(−(2ddd +2,2ddd +1,z3))
2ddd+1 w3T

0,2ddd+1,ddd
4,3,1 0 y1T

0,2ddd+1,ddd
4,3,3 0

4 P(−(2ddd +2,2ddd +1,z4))
2ddd+1 w4T

0,2ddd+1,ddd
4,4,1 0 0 y1T

0,2ddd+1,ddd
4,4,4

5 P(−(2ddd +3,2ddd,0,1,1,1))2ddd+1 0 0 0 0
6 P(−(2ddd +3,2ddd,1,0,1,1))2ddd+1 0 0 w4T

0,2ddd+1,ddd
4,6,3 w3T

0,2ddd+1,ddd
4,6,4

7 P(−(2ddd +3,2ddd,1,1,0,1))2ddd+1 0 w4T
0,2ddd+1,ddd
4,7,2 0 w2T

0,2ddd+1,ddd
4,7,4

8 P(−(2ddd +3,2ddd,1,1,1,0))2ddd+1 0 w3T
0,2ddd+1,ddd
4,8,2 w2T

0,2ddd+1,ddd
4,8,3 0

TABLE 19. The left side of the matrix for (lddd)4.
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P(−(2ddd +3,2ddd +1,z2 + z3))

ddd P(−(2ddd +3,2ddd +1,z2 + z4))
ddd P(−(2ddd +3,2ddd +1,z3 + z4))

ddd P(−(2ddd +4,2ddd,1))ddd+1

1 0 0 0 0
2 y3T

0,2ddd+1,ddd
4,2,5 y4T

0,2ddd+1,ddd
4,2,6 0 0

3 y2T
0,2ddd+1,ddd
4,3,5 0 y4T

0,2ddd+1,ddd
4,3,7 0

4 0 y2T
0,2ddd+1,ddd
4,4,6 y3T

0,2ddd+1,ddd
4,4,7 0

5 w4T
0,2ddd+1,ddd
4,5,5 w3T

0,2ddd+1,ddd
4,5,6 w2T

0,2ddd+1,ddd
4,5,7 y1T

0,2ddd+1,ddd+1
4,5,8

6 0 0 w1T
0,2ddd+1,ddd
4,6,7 y2T

0,2ddd+1,ddd+1
4,6,8

7 0 w1T
0,2ddd+1,ddd
4,7,6 0 y3T

0,2ddd+1,ddd+1
4,7,8

8 w1T
0,2ddd+1,ddd
4,8,5 0 0 y4T

0,2ddd+1,ddd+1
4,8,8

TABLE 20. The right side of the matrix for (lddd)4.
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