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ABSTRACT. Letk be a field of characteristic zero, and n, d, and r be non-negative
integers with 1 <r <m—1. Let N be the integer dn + r, P be the polynomial ring
k[xi,x2,x3,x4], fa be the polynomial x} 4+ x} + x5 +x} in P, Cgp, be the ideal
(Y, ,xY, %)) of P, P, be the hypersurface ring P/(fn), Qanr be the quotient

ring P, /Cq prPn and QZ_’M be the third syzygy module of Qg as a P,-module.

3

We prove that Q?i.n.r is isomorphic to the direct sum of 2d + 1 copies of Q7 ,, ..

1. INTRODUCTION

One often studies an ideal I in a commutative ring R by computing invariants of
the quotient ring which is defined by some sort of power of I. Sometimes one stud-
ies ordinary powers of I, see, for example, [8, 18]; sometimes one studies symbolic
powers [9, 16], sometimes one studies Frobenius powers [19, 26]. We consider
bracket powers; indeed we have found that projects which begin as projects about
Frobenius powers often end up being projects about bracket powers [24, 21].

For an arbitrary graded algebra R, over an arbitrary field k, with maximal homo-
geneous ideal m = (xi,...,xy,), it is very natural to ask how the bracket powers,
mV = (... x), of m are related. In particular, how is the resolution of R/m!"!

by free R-modules related to the resolution of R/ ml4N for various exponents N and
gN?

We focus on hypersurfaces of the form R = P/(f), where P is a polynomial ring
over a field, and f is a homogeneous polynomial in P. The most interesting feature
of the R-resolution of R/I IVIR is the infinite tail of the resolution, which is a matrix
factorization of f, see [10].

The situation has been fairly seriously studied when P = k[x,y, z], m is the max-
imal ideal (x,y,z), k is a field of characteristic p, f is a homogeneous polynomial
of P, and R is the hypersurface ring P = P/(f). If f = x" +y" + 7", then the Betti
numbers of P/ml4 P are calculated in [24] and the resolution of P/ml4 P is given in
[21]. If f is a general homogeneous form of P, then the Betti numbers of P/ml4P
are calculated in [25]. In the present paper, P is a polynomial ring with four vari-
ables.

Date: February 15, 2022.
2010 Mathematics Subject Classification. 13D02, 13C14.
Key words and phrases. Lefschetz properties, matrix factorization, maximal Cohen-Macaulay
module, order ideal, rings of finite CM-type, syzygy, Ulrich module.
This paper was written during the first author’s sabbatical in the Fall of 2021. He appreciates the
research support provided to him by the University of South Carolina.
1



2 A.R.KUSTIN, R. R.G., AND A. VRACIU

Data 1.1. Let k be a field, and n, d, and r be non-negative integers with
(1.1.1) 1<r<n-1.
(Usually d is also positive.) Once d, n, and r have been chosen, then
N=dn+r.
Let P be the polynomial ring P = k[x1,x2,x3,X4], fn be the polynomial
fo =X+l

in P, P, be the hypersurface ring P/(fu), Canr be the ideal (x),x),xY,x) of P,
and Qg » , be the quotient ring

(1-1~2) Qd,n,r = _n/Cd,n,rpn-
Let M, be the Abelian group Z & (%)4. The polynomial ring P is M,-graded,

where the degree of the monomial x{'x52x5°x}* is

(a1 +ar+az+aq,ay,a,as,ds),

with a; equal to the image of g; in ,%. The polynomial f, and the ideal Cg  , are
both homogeneous with respect to the M,-grading on P. Let G4, » be the minimal
M;,-homogeneous resolution of Qy ,, » by free P,-modules.

Ifd =0, then
(fn) g (X?,XE,XE,XZ)
are nested complete intersection ideals, Co_‘,,,,IS,, is a quasi-complete intersection

ideal of P,, in the sense of [1], and Gonr 18 the two-step Tate complex [23, 11].
Indeed, Go 5 looOks like

(1.1.3) B ps A ps B ps A RS PPt P,
where matrices A and B with entries in P are given in Table 1, and A and B are the
images of A and B in P,. The matrices A and B form a matrix factorization of fj, in
the sense that AB and BA both equal f, times the 8 x 8 identity matrix over P. Some
further discussion about the case d = 0 may be found in Section 11.

If d is positive, then f, is not in the ideal Cy,, and there is no two-step Tate
complex associated to the P,-module Qd nr- Nonetheless, when the characteristic
of k is zero, the multi-graded Betti numbers in the minimal resolution of G4, , by

free P-modules have been calculated in [22]. (The calculation is summarized in
Section 4.) This calculation shows that the resolution G4 ,, , looks like

(1.1.4) .. — plod+8 LEN pled+8 LN plod+s g—3>P,?d+7 sz;* &, B,

where the form of the matrices g4 and gs is given in Table 2. (As before g; is a
matrix with entries from P and g; is the image of g; in P,.) The matrices M; j and
Nj;j are (2d + 1) x (2d + 1) invertible matrices of constants.

The similarity between the form of the matrices in Table 1 and the matrices in
Table 2 lead us to make the following conjecture.

Conjecture 1.2. If the characteristic of k is zero, then the infinite tail of G4, is
isomorphic to the direct sum of 2d + 1 copies of the infinite tail of Go .
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—-r —-r
B— 0 —x; =X, 0 —X 0 0 X
x5 x| 0 0 0 0 —xy o
—x5 0 x| 0 0 —x, " 0 x5 "
Xy 0 0 x] 0 —x5 0w 0
0 0 0 0 X 2 % 4
TABLE 1. The matrices A and B for the resolution of (1.1.3).
The matrix g4 has the form
XMy 0 0 0 Xy "Mis | —x5 "My | Xy "Mz 0
—x,M») 0 Xy Moz | —x5 "Moy | X Mos 0 0 0
XMz | Xy M3 0 —x5 M3y 0 x| "M 0 0
—X4Myy | X5 "My | —x5 "My 0 0 0 X} "My 0
0 —x3Msy | —xiMs;3 —xyMsy 0 0 0 X} "Msg
0 x| Mg 0 0 0 —X4Mes | —X5Me7 | X5 Mg
0 0 qu73 0 —x£M75 0 x§M77 %7rM7g
0 0 0 qug4 nggs XEMSG 0 )ﬁingg
and the matrix gs has the form
X} "Ny | —x5 "Nip | X5 "Ni3 | =X} "Niy 0 0 0 0
0 0 x4 No3 XN | =X "Nos | X "Nog 0 0
0 X4N32 0 —xX5N34 | —x5 "N3s 0 X} N3z 0
0 —x3Ngp | —x5Na3 0 —xy ' Nas 0 0 X} "Nag
X, N5 X Ns> 0 0 0 0 —x; 'Ns7 | X5 "Nsg
—x5Ns1 0 X|Ne3 0 0 —)dler% 0 )8127"1\%8
X4N71 0 0 X[ N74 0 —x5 'Nig | X "Ny7 0
0 0 0 0 x]Ngs x5 Ngg x5 Ng7 x4 Ngg

TABLE 2. The matrices g4 and g5 for the resolution of (1.1.4). Each
matrix M;; and Nj; is a (2d + 1) x (2d + 1) invertible matrix of con-
stants.

Possibly it is helpful to observe that Conjecture 1.2 is equivalent to conjecturing
that the matrix factorization of f, associated to Cq,, is given in Table 3, where
there are 2d + 1 copies of A and B on the main diagonal. Another alternate phrasing

of Conjecture 1.2 involves the third syzygy module,

QS

'dnr’

of Qg nr as a P,-module.
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A 0 0 B 0 0
0 -. o and |0 "-. 0
0 0 A 0 0 B

TABLE 3. An alternate version of Conjecture 1.2 is that the matrix
factorization of f, associated to Cg, , is given above, where A and
B are the matrices of Table 1 and there are 2d + 1 copies of A and B
on the main diagonal.

Conjecture 1.2 is equivalent to the assertion that Qg . 18 isomorphic to the direct

sum of 2d + 1 copies of QO nr

We establish Conjecture 1.21in Corollary 10.2.

In order to prove Conjecture 1.2, one “need only” find bases so that, in the new
bases, all of the invertible matrices M;; and N;; from g4 and gs in Table 2 simulta-
neously become the identity matrix. We carried out this calculation when 1 <d <2
(with n and r arbitrary satisfying (1.1.1)). That is, we applied the procedure of [20];
found explicit matrices M;; and N;;; and simultaneously inverted all M;; and N;;.
We had hoped that the explicit calculations would show us the “special bases” for
the free modules in Gg 5, that give rise to

(1.2.1) M;j = Nij =g,

where I, is the m X m identity matrix. Alas, we learned that there are no special
bases. One can choose any basis for any one of the 16 indicated summands of the
free modules in position 4 or 5 of Gy, , and then there is a unique choice of basis
for each of the other 15 indicated summands which give rise to (1.2.1).

In other words, Conjecture 1.2 is a conceptual problem and not a calculational
problem.We move to a “Universal resolution” which maps to all of the G4, , and
which is known to have (approximately) the desired form. We adopt the following
setting for this “universal resolution”.

Data 1.3. Let k be a field, °J3 be the polynomial ring

B =k[y1,y2,Y3,y4, w1, w2, w3, wa,
f be the polynomial
f=y1wi +yawa +y3w3 +yawa
in *P3, and P be the hypersurface ring 3/(f). For each non-negative integer d, let €,
be the ideal ( d“vx/li, y‘é“mg, y‘31+1w‘31, yff“mﬁ) of B3, and Q4 be the quotient ring
Qg = P/C4B.
Let 9t be the Abelian group Z°. The polynomial ring 3 is 90t-graded, where the

degree of the monomial y{'y5?y5* yf{“w]f‘wlz’z wb3wb4 is

(a1 +ax+ a3z +aa,by +by+ b3+ bz +ba,ar — by,a — by, a3 — bz, as — bs).

The polynomial f and the ideal ¢; are both homogeneous with respect to the 21-
grading on *B. Let &4 be the minimal 9t-homogeneous resolution of Qg by free
‘B-modules.
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The set up of Data 1.3 is relevant for three reasons. First of all, for each pair
(n,r), which satisfies (1.1.1), there is a ring homomorphism Apr P — P, and a
homomorphism of Abelian groups 0, » : 91 — M, such that

14. &, O P, is a resolution of Od nr by free P,-modules (see Theorem 7.5), and

1.5. if 0 is an 9M-homogeneous element of *P of multi-degree m, then A, ,(8) is
a homogeneous element of Py, in the My,-grading, of multi-degree o, (m) (see
Remark 5.3.(b)).

Also, the polynomial § is a quadratic form in the polynomial ring J3; consequently,

1.6. there are at most two isomorphism classes of non-free indecomposable maxi-
mal Cohen-Macaulay (MCM) 3-modules.

The result 1.6 is explicitly established, over any field, in [6, Prop. 3.1]. (The
MCM modules over the particular ring 3 are also discussed in [7, Remark 2.5.4].
Indeed, the classification of MCM-modules over 3 may be deduced from Knérrer
periodicity [17].) At any rate,

fIg =2AB  and I3 = ‘B,

for 2 and B as given in Table 4, and every non-free indecomposable MCM -
module is isomorphic to Im2l or Im*B. The fourth syzygy, 63, of the *3-module
04 is a MCM ‘B-module; consequently,

(1.6.1) G5 = (Im2A)* @ (ImB)? @R,
for some non-negative integers a, b, and c.

Apply 1.4 to see that A, ,(84) = Ggp,. The resolution G4, is homogeneous
with respect to the M,,-grading; the multi-homogeneous Betti numbers are given
in [22]. The Mp-grading on Gg4,, may be pulled back along oy, to obtain the
MN-grading on &4. (It is clear that any given o, has a large kernel; however it is
equally clear that Nkeroy, » = 0.)

(1.6.1) is that

G4 = (ImA)2+L,
The proof of Conjecture 1.2 is then complete because A,,,(Q_l) is equal to the matrix
A of Table 1. (A few tricks involving MCM modules establishes that the third
syzygy, &3, of Qg satisfies & = (ImB)2+1))

The B-modules Im2( and Im B were called “maximally generated maximal Co-
hen Macaulay” modules by Ulrich in [30]. They were called “linear maximal
Cohen-Macaulay modules” by Backelin, Herzog, and Sanders in [2]. At present
they are called Ulrich modules.

The main results in this paper take place in characteristic zero. Indeed, we use the
multi-graded Betti numbers in the minimal resolution of G4, by free P-modules
which were calculated in [22]. The calculation in [22] is largely a Hilbert series cal-
culation and this calculation often appeals to Stanley’s theorem [28, Thm. 2.4] that
every Artinian monomial complete intersection over a polynomial ring k[xj, ..., x,],
where k is a field of characteristic zero, has the strong Lefschetz property.
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TABLE 4. The matrices 2 and ‘B give a matrix factorization of fIg.
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2. NOTATION, CONVENTIONS, AND PRELIMINARY RESULTS.

2.1. Let R be a Noetherian ring, / be a proper ideal of R, and M be a non-zero
finitely generated R-module.

(a) The grade of I is the length of a maximal regular sequence on R which is con-
tained in /. (If R is Cohen-Macaulay, then the grade of / is equal to the height
of I.)
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(b) The R-module M is called perfect if the grade of the annihilator of M (denoted
anng M) is equal to the projective dimension of M (denoted pdp M). The in-
equality

grade(anng M) < pdp M
holds automatically.

(c) Perfect modules are grade unmixed; see for example [4, Prop. 16.17]. In partic-
ular, if R is Cohen-Macaulay and M is perfect, then the set of associated prime
ideals of M is equal to the set of prime ideals which are minimal in the support
of M.

(d) If R is a polynomial ring over a field and M is a finitely generated graded R-
module, then M is a perfect R-module if and only if M is a Cohen-Macaulay
R-module. (This is not the full story. For more information, see, for example,
[4, Prop. 16.19] or [3, Thm. 2.1.5].)

(e) The ideal I in R is called a perfect ideal if R/I is a perfect R-module.

2.2. Acomplex ¢ :--- — C; 2 1 5 Cy — 0 of R-modules is called acyclic if
H;(¢) =0for 1 < j. If € is an acyclic complex, then € resolves Ho(%). If R is
M-homogeneous for some Abelian group I, with Ry a field, and € is a minimal
./ -homogeneous resolution of Hy(%), then the image of c; is the i syzygy of the
R-module Hy(%).

2.3. If ¢ is a homomorphism, then we write Im ¢ for the image of ¢.
Notation 2.4. If j € {1,2,3,4}, then let

zj = (#1,#,#3,#) € 71,
with

we {0 %
1 ifi=.

If a is an integer, let a represent the four tuple a = (a,a,a,a); in particular 0 =
(0,0,0,0),1=(1,1,1,1), and r = (r,r,r,r).

Once n is chosen, we use the following notation to compactify the M,-degree of
a monomial from P.

Notation 2.5. Adopt the data of 1.1. Consider the homomorphism of Abelian
groups

7> = M,,
which is given by
(k7 pl Y pz? p37 p4) = m(k7p| 7p23p37p4),

where

Mk p1.p2p3,ps) = K+ P1+P2+P3+P4,P1,P2,P3,P4) in My.
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3. THE MINIMAL M,,-HOMOGENEOUS RESOLUTION OF r-RESTRICTED IDEALS.

Recall the data of 1.1. In this section we observe that if an M,-homogeneous
P-module X is “r-restricted” (see Definition 3.1), then every module in the minimal
M,,-homogeneous resolution of X by free P-modules is also “r-restricted”. We use
this idea in Section 6 when we deform the P-module P/ (xY ,xﬁ’ ,xév ,xﬁ’ , Jn) into the
‘B-module

B/ O g We S W ),
in the language of Data 1.3.

Definition 3.1. Retain Data 1.1 and Notation 2.5. If € is an integer, then let €
represent the image of € in % Let X be a M,-homogeneous P-module. The

element x of X is called r-restricted if the M,,-degree of x is
(B.11) M4 e, rey res rey) for A and g, in Z, with €, € {0,1}, for 1 <h < 4.
The module X is called r-restricted if there exists a minimal Mj,-homogeneous pre-
sentation
AR x50

in which the generators of Fp and Fj all are r-restricted.
Example 3.2. Adopt Data 1.1. The P-module P/ (x,xY ,x13v X, fn) is r-restricted.

Remark 3.3. If m; and m; are in M, with P(—m,) and P(—m;) both r-restricted
free P-modules of rank one, then every M,-homogeneous P-module homomor-
phism ¢ : P(—my) — P(—m;y) is given by multiplication by an element of P of the
form

(33.1) KX g, 0 )

for some homogeneous polynomial g of degree A and some integers A, ey, ez, e3,e4,
with each e, € {n —r,0,r} and m(s ¢, ¢, ¢; ,) = m2 —mi. Indeed, ¢ is given by
multiplication by an M,-homogeneous element of P of degree m, —m; and every
such element has the form (3.3.1).

Lemma 3.4. Retain Data 1.1. Let X be a finitely generated My-homogeneous P-
module which is r-restricted in the sense of Definition 3.1. Then the following
statements hold.

(a) Every free module which appears in the minimal M, -homogeneous resolution

d d d
F: ‘~-—3>F2%2F1—1>F0

of X by free P-modules is r-restricted.

(b) Every entry in every matrix d; from F has the form (3.3.1).

(c) If P(—my) and P(—m) are M,,-homogeneous summands of Fi+ and F;_y, re-
spectively, for some integer i, then the composition

d; d;
P(—my)—> Fiy) —>F, F_| — P(—m))

is multiplication by an element of the form (3.3.1).
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Proof. Assertions (b) and (c) follow from (a) combined with Remark 3.3. We prove
(a). Let

R MR 2y 0

be a minimal M,-homogeneous exact sequence of P-module homomorphisms with

by by bo
F2:®P(_m273)7 F :@P(_mhq), and FO:@P(_mO,P)v
s=1 g=1 p=1

where the shifts
movp = m(AO,p7r81vp7r£2,p7r€3,p7r84,p)7 Wlth éhvp S {O’ 1}’ and
. —/ ~ T
miq = m(AlA,qugll,qualz,qugé,qugit,q)’ with Sth = {0’ 1}’
have the form of (3.1.1). We prove that each ma s = ma, 2, 2 2,04, Das the

form of (3.1.1). At that point Imd; satisfies the hypotheses that are satisfied by X;
hence one can iterate the procedure to construct

dj

Fj1 — Fj,
for2 <j.
Let
Hyp - Hyp,
Hp, 1 - Hp p,

be the M,-homogeneous matrix for d,. Observe that

(3.4.1) my s =my g+ degHys,

for all g and s with 1 < g < by and 1 < s < by, where “deg” represents the degree
in the Mj,-grading. Let

degH, , = mg

P4 W1paW2p.gW3.p.gWapg)

with B, ; and wy, , , in Z, for each ordered pair (p,q) which appears in the matrix
ds. It follows, from (3.4.1), that

(3.4.2) Mg = &+ Whgs-

forall h,q,s with1 <h<4,1<g<bj,and 1 <5 < bs.
Fix (h,s) with 1 <h <4 and 1 < s < by. The relation

Hl,s

Hb],s

on d; is a minimal relation. The target of d; is the free P-module Fp and P is
a domain. Consequently, the variable x;, does not divide all of the polynomials
{H,s |1 < g <b}. Indeed, when % and s are fixed there exits a parameter g with
Wh,q.s = 0. Apply (3.4.2). Keep in mind that é}l’q € {0,1}. Conclude Ay, € {0,7}.
This process holds for all fixed (A, s). We conclude that all 1;,7 s are in {0,7}. Thus,
all my 5 have the desired form. ]
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4. THE MULTI-GRADED RESOLUTION Gg , » FROM [22].
The following result is [22, Cor. 7.1].
Theorem 4.1. Adopt the setup of Data 1.1, Notation 2.4, and Notation 2.5 with

k a field of characteristic zero and d positive, then the minimal My-homogeneous
resolution Gg p y of Qg nr by free Py-modules has the form

o e ) ) ) )
Ganr: - =526 %635 6,5 612 G,

j=1
_ d 5 d+1 o p d+l1
Gy :Pn[_m(zd—l,r)] & n[_m(Zd,rzj+rzk)] - @Pn[_m(Qd-i-LQ)] i
1<j<k<4

4

B = A 2d+1 p , 2d+1

Gi= @ P"[_m(2d+%,rz/'+r2k+m)] @@Pn[_m@”%ﬂj)] ’
1<j<k<t<4 J=1

forioddwith 3 < i, and
Gi— Ful m(2d+%,£)] b 1§%{§4P”[ m(zd-i-%flj“‘llk)]

for i even with 4 < i.
The paper [22] does not explicitly give the form of the matrices g; from Gy, 4;

however, this is an easy exercise. (As always, the matrix g; has entries from P and
gi 1s the image of g; with entries in F,.)

Corollary 4.2. Retain the notation of Theorem 4.1. The form of the matrices g4 and
gs is given in Table 2 with each (2d + 1) x (2d + 1) matrix M;; and N;; an invertible
matrix of constants.

Proof. Decompose the free modules Gy, with 3 < k <5 as follows:

G3 = _n[_m(2d707r7r7r)]2d+] @Pn [’fn(2d7r707r7r)]2d—i_l @Pn [’f’1(2d7r7r707r)]2d—i_l
© Pa [m(2d,r,r,r,0)]2d+l © P [m(zar+1,r7o,o,0)]2d+1 © Pa [m(2d+1,0,r,0,0)]2d+1
® Py [m(zd+1,o,o,r,0)]2d+1 O Py [M(2441,0,0,0,0)] i
Gy = pn[_m(Qd,r,r,r,r)]2‘1_‘—1 69pn[_m(Qd—H,r,r,O,O)] i
p_ 2d+1 P.l— 2d+1
S Pal=m2a 41,7070 S Pal=m(2d417,001)]
5 2d 5 2d
® n[_m(Qd—i-l,0,0,r,r)] o @Pn[_m(ZdH,o,r,O,r)] -
5 2d 5 2d
B P2 110,704 B Pal—m (20420000, and
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Gs = _n[ m 2d+1,0,r,r,r)]2dJrl EBpn [m(2d+l,r.,O,r,r)]Qd+1
n[m 2d+1,rr,0, )] 2+ @pn [m(2d+l,r,r,r,0)]2d+1
& Palm(aa 12,5000 @ Palmiaa 20,00

[ 2d+1‘

n[M(20+2.00.7-0)" T 6 Palm(2d 42,0001

The only possible non-zero M,-homogeneous maps Gs — G4 and G4 — G3 have
the form of the matrices in Table 2, for some matrices of constants M;; and N;;.
It remains to explain why all of the M;; and N;; must be invertible. According
to Eisenbud’s results on matrix factorization [10], f, is in the radical of the ideal
generated by determinant of g for each k, with 3 < k. If some M;; or N;; is singular,
then the determinant of the corresponding g is contained in the ideal generated by
three of the variables xj,x»,x3,x4; hence f, ¢ \/detg, and this is a contradiction.

U

5. THE MAPS FROM THE “UNIVERSAL RESOLUTION” &4 TO EACH Gg 5 .

5.1. Fix anon-negative integer d. Recall °3, §, ‘B, Cq, Qg, M, and &, from Data 1.3.
Let J;4 be the ideal (€4,f) of B and let £; be the minimal 9)i-homogeneous reso-
lution of 3/J, by free P3-modules. Let n and r be arbitrary integers which satisfy
(1.1.1). Recall P, fy, Py, Canr» Qd> My, and Gy, , from Data 1.1. Let .94 ,, , be the
ideal (Cd,,,’,, fn) of P and let Lg nr be the minimal Mp-homogeneous resolution of
P/.%4 by free P-modules. Let S, , be the subring

kixy, X777, x5, 5T, X, 5T X, Xy
of P.

Definition 5.2. Retain the data of 5.1. Define the k-algebra homomorphism
Apr B —P
with
Anr(yi) =xi and  An,(w;) :X?ir
and define the group homomorphism o, , : 991 — M, by
Opr(a1,az,a3,a4,as,a6) = (ray + (n—r)ay,ras,ras,ras,rde)

for

(ay1,a2,a3,aa,as,a6) € M = Z° and

(ra; + (n—r)ay,ras,ras,ras,rag) € My, =7Z@ (%)4,
where @; is the image of the integer a; in ,%.
Remarks 5.3. Retain the notation of Definition 5.2.
(a) Observe that

An,r(f) = fn, An,r(Q:d) = Cd7n7ra and An,r(jd) = jd,n,r-

It follows that the ring homomorphism Ay, : 8 — P induces a ring homomor-
phism A, , : P — B,.
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(b) If 8 is an 9M-homogeneous element of P, then A, »(6) is an M,-homogeneous
element of P and

(5.3.1) O r(I-degree(0)) = M,-degree(A, »(0)).

Indeed, if 6 = yi”w]l’lygzwzzyg”wg3 yf(‘w4 , then both sides of (5.3.1) are equal to

4
(r Z a; + (n — r) bi,r(&l — bl),r(dz — bz),r(ﬁg — b3),r(d4 — b4)>
i=1 i=1

inM, =Z& (:Z)*.

(c) Let
Yy=gcd(r,n—r), r=r/y, and n'=n/y,
where “gcd” means greatest common divisor. It is well-known, and easy to
prove, that the k-algebra homomorphism
k[y, w] — k[x],

given by y — x” and w — X", has kernel (y " —w" ). Thus, the k-algebra

homomorphism
Apr B —P
induces a ring isomorphism from
P

!yl / !yl /gl _>Sn,r'
O w7 g T T )

View P, as a 3-module by way of the ring homomorphism Ap, : B — P, of
Remark 5.3.(a). The heart of the paper is Theorem 7.5, where we prove that the
complex &, Qg P, is a resolution of Qd nr by free P,-modules. The first step in the
proof of Theorem 7.5 is to show that the ideal J; = (€4, f) in the polynomial ring
B is perfect of grade four. This step is carried Section 6.

6. THE IDEAL Jg = (Y4 I ydHIud ya+1yd (d+1yd 5 IN THE POLYNOMIAL
RING fB

Adopt the notation of 5.1. In Theorem 6.2 we prove that the ideal J; = (&g, f)
in the polynomial ring 3 is perfect of grade four and we give the structure of the
minimal 99t-homogeneous resolution of 3/J, by free P-modules. This result is
significant to us because the rings

and Qg

Sl =

are equal.

To prove Theorem 6.2, we first consider the ideal # , » = (Cgpr, fn) in P. The
numerical information about the minimal Mjy-homogeneous resolution, Ly, », of
P/ Z4 nr by free P-modules is calculated in [22]. This numerical information may
be read to give the precise form of each entry of each differential in Ly, ,. We
carefully “lift” the differentials of Lg,, to homomorphisms of 3-modules. We
prove Theorem 6.2 by showing that the “lifted” homomorphisms form a resolution
of 3/74 by free P-modules.
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Theorem 6.1. Adopt Data 1.1 with d positive and k a field of characteristic zero.
Let Igp, be the ideal (Cgpy, fn) of P and Lq 5 » be the minimal M,-homogeneous
resolution of P/ 9y n r by free P-modules. Then the following statements hold.

(@) The resolution Lg p y has the form

(Zd7n,r)2

- (Ld,n,r)z

(Zd,nﬁr)l

Ednr gdn.,r)3 (L )0
> (Ldnr)o,

0— (Ld n r) (Ld n r) E— (Ld.,n,r)2
where (Lgpr)o = P,

(La
n r o @ P mg ,.Zl))
@P( md1 rz,))
d
(Ld,n,r)Z = ®P( (2‘1*1[)) 4t
® D P(_m(Qszi-l-rzj)) *
1<i< j<4
k@P(_m(Zd—i—lO))dJrl»
(
EBP( m(2d+1 rz,))2d+1
(Ld,n,r)3 = 9

)2d+1

S SY) P(_m(2d,rzi+r1j+rzk) , and

\  1<i<j<k<4
d
P(—m4420))

)@ P(—m o
(Ld,n,r)4_ 1§%§4 ( (Zd—i-l,rzl-i-rzj))

\ GBP(_m(Qd,z) )dH :

(b) If 6 is an entry in one of the matrices ({4 )i, then
6 = x5y’ x5 xy g (1, 43,5, 4%),

where each e; is in the set {r,n —r,0} and g is a homogeneous polynomial in
the polynomial ring k[&1,&>,E3,E4].

(¢) The form of each differential of Lqpr is given in Section 12. The notation is
explained in 12.1. The form of the differential (L ,)1 is given in Table 6, the
form of (bapnr)2 is given in Tables 7 and 8; the form of ({gpn,)3 is given in
Tables 9 and 10; and the form of ({4 nr)a is given in Tables 11 and 12.

Proof. Assertion (a) is [22, Cor. 7.2]; (b) is an immediate consequence of (a); and
(c) is a rephrasing of (b). L]

We carefully lift the complex Ly , , of free P-modules to maps and modules over
. It does not matter what we take for n and r as long as n # 2r.

Theorem 6.2. Adopt the notation of 1.3 and let 34 be the ideal (€q4,§) of B. Then
the following statements hold.

(a) The ideal 34 in the polynomial ring *B is perfect of grade four.
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(b) The minimal M-homogeneous resolution of B /T4 by free P-modules has the
form

[ [ [ [
0= (£a)s % (£4)3 Y2 (22)2 Y2 (2)1 Y% (2000,
where

(La)o =P,
4

(£a)1 =R(—(1,1,0)) P R(—(d+1.d,2))",

=1
ém<—<d+z,d+1,zi>>l@m<—<2d+3,zd—1,1>>d
(La)2=9® @ PB(—(2d+2,2d,7+z;))*!

1<i<j<4

d+1
(OP(—(2d +1,2d +1,0))*,

( 4

D P(—(2d +2,2d + 1,7;))%+!

=1

o @ B(—(d+3,2d,z+z+u) M and

\  I<i<j<k<4

P(—(2d+2,2d+2,0)? @ @ P(—(2d+3,2d+1,z+z;))?
(La)a = 1<i<j<4

OP(—(2d +4,2d,1))2+1.

(c) The form of each differential of £4 is given in Section 12. The notation is
explained in 12.1. The form of the differential |y is given in Table 13; the form
of o is given in Tables 14, 15, and 16; the form of |3 is given in Tables 17 and
18; and the form of |4 is given in Tables 19 and 20.

Proof. Let n and r be arbitrary integers which satisfy (1.1.1) with n # 2r. We begin
by building the matrices [; with entries in 3. Consider an entry 0 in one of the
matrices (/g ,)i- According to Theorem 6.1.(b),

_e1.en e3¢
0 = X1’ x3"x 8 (¥, 25,43, %)

where each ¢; is in the set {r,n—r,0} and g is a homogeneous form in four variables
over k. We now define the corresponding entry in (Iz); to be

MA2A3A4g(YIW1,y2Ww2,y3W3,y4Ws),

where
yi, ife;=r,
7\«1': Wi, ife,-:n—r,and
1, ife;=0.

(The integers r and n — r are different because we have chosen n and r with n # 2r.)
We have made maps and modules

[ [ [ [
62.1) 40 0— (Sa)a Y (2405 5 (2,0, L2 (), L 2,
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In fact, we have recorded the maps (lz);, for 1 <i <4, in Tables 13-20. We have
also recorded the 9)i-homogeneous Betti numbers of these maps in the statement of
Theorem 6.2.(b). It is clear that the image of (Iz); is J4. It is clear that the diagram
(la)i
(6.2.2) (La)i — > (La)i1
\LAn,r An,r
(

Zdﬁn,r)i
(Ld,n,r)i - (Ld,n,r)i—l

commutes for all i. It remains to show that £4 from (6.2.1) is a complex and is
acyclic.
We first show that £4 is a complex.

Claim. Each entry of each composition (I3);o (Ig)i+1 has the form

(6.2.3) MA2A3hag(y1w1,y2w2,y3W3,Y4W4),

where each Ny, is an element of {yp, wy, 1} and each g is a homogeneous polynomial
in four variables over k.

Proof of Claim. Fix integers i, p,q with 1 <i<3,1 < p <rank(Lg,,)i—1,and
I<g< rank(Ld,n,r)iJrl-
Let P(—my) be the summand of (Lgp,)i+1 in position ¢ and P(—m;) be the sum-

mand of (Lg, ,)it1 in position p. The product row p of ({g,,); times column g of

(Ed,n,r)i-i-l is
rank(Ld_’,,J)i

Ztl [(gd,n,r)i])P,j[(gd,n,r)ﬁl]jﬂ'
j=
According to Lemma 3.4.(c) there are uniquely determined integers A, ey, ez, e3,e4
with

e, € {n—r,O,r}, and M(A e,02,e3,4) — M2 — M1,
such that, for each index j, with 1 < j < rank(Lgp,);, there is a homogeneous
polynomial g, of degree A, in k[€;,&5,E3,84], with

[(Camr)il)p.il(Camr)iviljq =Xy 2505 g (¥, 25,43, x7).
Now lift the calculation from P to 3. Observe that the product row p of (Iz);

times column ¢ of (lz);+1 is the sum of rank(Ly); elements of B3 each of which has
the form of (6.2.3). This completes the proof of the claim. U

Resume the proof that £; is a complex. We know from (6.2.2) that

An,r(([d)i o ([d)i—H) =0,
for each i. Thus, each entry of (Iz); o (Iz)i+1 is in the kernel of A, ,. The element
(6.2.3) is in ker A, , if and only if g(y;w1,yaw2,y3w3,yawa) is in ker A, ,. The only
homogeneous polynomial g € k[&;,&2,E3,8E4], with
g(yiwi,yaw2,y3w3,y4ws) € ker A, ,

is the zero polynomial. We conclude that (I;); o (Iz)i+1 = 0, for all i; hence, £4 is a
complex; furthermore Ay, : £4 — Lg » r is a map of complexes.
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We employ the Buchsbaum-Eisenbud criteria [5] in order to show that £; is
acyclic. It suffices to show that the matrices (Iz); have the expected rank (denoted
er;) and that the ideal ((lz);), generated by the er;-minors of (Iz);, has grade at
least i, for each i. Let I(({q 5 ,);) represent the ideal of P which is generated by the
er;-minors of ({4, ,);. The map of complexes A, , carries I((lg);) to I((€gpnr)i), for
each i. The complex Ly, , resolves P/Cy p ,, which is a perfect P-module of pro-
jective dimension four. It follows that the ideals I(({g5,)i), with 1 <i <4, all are
primary to the maximal ideal (x,x2,x3,x4) of P. (See, for example, [14, Props. 6.8
and 6.3.(c)].) Thus, each ideal Ay ,(1((lz);)) has grade four. We finish the argument
by showing that each I((lz);) has grade at least four. The concepts of grade and
height coincide in the Cohen-Macaulay ring J3; so we show that each ideal 7((lz);)
has height at least four.

Let g1 be a prime ideal of 8 which is minimal over I((l;);) and has the same
height. The ideal I((l);) is 9t-homogeneous and ¢; is minimal over I((lz);); so
q1 1is also 9-homogeneous. Let g, be the kernel of Ay, : B — P. Recall from
Remark 5.3.(c) that the ring 3/¢> is isomorphic to S, ,. The ideal (g1 +¢2)/q> is
a proper Mp-homogeneous ideal of /g2 =2 Sy r; S0 g1 + 2 is a proper ideal of B.
Let g3 be a prime ideal of *}3 which is minimal over g; + ¢». It is well-known that

htgs < htg; +htgs.

(A proof from Algebraic Geometry (when k is algebraically closed) may be found
in [13, Chapt. 1, Prop. 7.1]. A proof in the present generality is given in [27, III,
Prop. 17]. A proof which works over an arbitrary regular ring is given in [27, V.
Thm. 3].) At any rate, it follows that

htgs —htg, <htq; =htI((lg);)-
Of course, htgz —htg, = ht Z—;. We have seen that ‘q’—; is the maximal ideal
radica1(1<(‘€d,n,r)i)) ﬂSn,r = (xll->)gllir,x£>)f27r,xga)élir,x£7ﬂ47r>
of Sp . Thus,

4=htL = htgs —htgr <htqs = htI((1y);)
q2

and the proof is complete. U

7. THE HOMOMORPHISM A, , CARRIES THE RESOLUTION OF Q4 TO A
RESOLUTION OF Qg 5 1.

Retain the data of 5.1. View P, as a ‘-module by way of the ring homomor-
phism Ay, : B — P,. Recall that & is a resolution of 4 by free B-modules. In
Theorem 7.5 we prove that the complex &4 Oy P, is a resolution of Od nr by free
P,-modules.

The proof of Theorem 7.5 is given at the end of the section. In the meantime we
record various intermediate results. Notice first that

(7.0.1) Ho (84 @ Pn) = Q. r-
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Indeed, the complex &, is a resolution of Q4 by free B-modules; hence, the ho-

mology of &4 ®g, Py is Torz (Qg, P,). In particular,

C‘B S Py
d‘p An,r(¢d) ) Cdan

The complex &4 g P, is clearly a complex of free P,,—modules. It remains to show

that the complex &4 ®g; b is acyclic.

Ho (64 @ P) = Torg (Qg, ) = = Qunr-

In order to prove Theorem 7.5, we view Ay, : B — P, as the composition of two
ring homomorphisms:

‘B — > Im(ﬁn,r) —— Py,

where
< Sn.r
(7.0.2) Im(Ay,) = 20
Bnr) = )
The ultimate complex &4 Qs P, from Theorem 7.5 is equal to
G4 R Im(Anr) Opn(a, ) Pr-

We prove that &4 Qg Im(Ay ) is acyclic in Lemma 7.2. Then we apply Lemma 7.4
to conclude that the complex

(Gaep () ) Sins, ) P
is acyclic.
Lemma 7.1. Retain the data of 5.1 and Remark 5.3.(c). Then the following state-

ments hold.

(a) The elements

/

Iy r G r Iy v g r
ylll _W17)}; _W27y§ _W37yn4 — Wy
of P form a regular sequence on .
(b) The elements

2 / I / - / A /
A T e T A TP I T/ |
of B form a regular sequence on .

Proof. We first prove (a). According to Theorem 6.2, the ideal

d+1 d+1 d+1 d+1
= ()] W1,y2 W27y3 W37y4 W47y1W1+YZW2+y3W3+y4W4)

of the polyn0m1a1 ring ‘P is perfect of grade four. It follows that the associated
prime ideals of 3/J, are the prime ideals of 8 which are minimal over Jy. It is
clear that these ideals all have the form (vy,vy,v3,v4), where v; is equal to either y;

or w;. It is also clear that y’l'/_’ ' w{/ is not in any of the associated prime ideals
of B/T4. Thus, the element y'f/*' T w{/ of B is regular on P/T,. It follows that

(Jd,y'l'/*’ T w’l/) is a perfect ideal of B3 of grade five. The associated prime ideals
of

B/ (Tan ) " —wh)
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are the prime ideals of 3 which are minimal over (Jd,y'l‘,_’ - wf). It is clear that
these ideals all have the form (y;,wy,v2,v3,v4), wWhere v; is equal to either y; or

w;. It is also clear that ygl_'J — wgl is not in any of the associated prime ideals of
B/ (34, y’l‘,_' - w{/). Continue in this manner to conclude that the elements

/

- J/ !,/ / - / !/
yrlz r_Wq,y; '—wﬁ,y'; r_Wg,yZ r_WZ

of B form a regular sequence on P/Ty = Q.
Now we prove (b). We have seen that each of the ideals

(— / - r/ /o /
OF T =wi) ST —wi, 77 —wh)

- - / - /

C O =Wl BT —wh T —wh)

/ / / / /

I I / I _
COT T =wi, T =l )T w0 —wh)

of *P is prime; indeed, these ideals define the domains
K, ) CRIE, 007, 3, T SR, T o T, ]
gk[x’b xrll_r7 xl" -Xg_r7 xga -X]’jl_ra .XZ, -XZ_’] = Sn r-

)

/ / / / / J J/
Thus, the element§ Vi T - w{/, T — wgl, 5 T — ng, - wf{ of ‘,]3 form a
regular sequence in 3. On the other hand, yw; + yowy + y3w3 + y4w4 is not an
element of the prime ideal

/ / / / J/ / / /

! !4 _ _
O =W A =g A T )

. - / ! / [ / [ / . .
since Y] 7 —wh, )5 T —wh, s " —wh,andy) " —w} all vanish at the points

=(1,1,1,1,1,1,1,1) and p =(1,1,1,1,1,1,0,0),
p p

Iy Y Y Y Ty

but yywi + yawa + y3w3 + yawy does not vanish at both p and p’. We conclude that
the elements

- / - / - / - /
y'll r_anyg r_wg7yl31 r—Wga)’Z r_W£7y1W1+y2W2+y3W3+y4W4
of 3 form a regular sequence on ‘. U

Lemma 7.2. Retain the data of 5.1 and (7.0.2). Then the complex &4 Qg Im(Ay, )
is acyclic.

Proof. We show that the complex

(7.2.1) By O

07 =, T =Wl AT = T W)
is acyclic. The homology of (7.2.1) is

TOI‘SP (Qd 5 g P ¥ (’B Iy P P\ > .
I T R T Y'3[ —wi, )y T —wy)B
Thus, the homology of (7.2.1) is equal to
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where K is a resolution of

By
O =i s = wE T =W T W)

by free B-modules. According to Lemma 7.1. (b) the elements

/ /

/
ylll e leyn - WZuyn W37yn - W47
of '3 form a regular sequence on ‘B. The ring 3 is a domain and § is not zero; so, f
is a regular element on *J3 and the ideal

- / - / - / A /o o=
O = wh 8 v T )R

has grade four. Consequently, we may take K to be the Koszul complex of free

B-modules which is associated to the elements

/ / / /

- _ - / -, /
(7.2.2) Vi =wl, s T —wh s T —wh T —wy

of 6. Apply Lemma 7.1.(a) in order to see that the elements (7.2.2) of 3 form
a regular sequence on Q4 It follows that Q4 ®q K is acyclic; and therefore, the
complex (7.2.1) is also acyclic. 0

Corollary 7.3. The complex 4 @g; Im(Ay ») of Lemma 7.2 is a minimal M,, homo-
geneous resolution of Hy(64 @y, Im(Anr)).

Proof. The complex &, is the minimal 9)t-homogeneous resolution of £, by free
B-modules. No units appear in the differentials of &,. Every non-zero entry of
every differential matrix from &, has 9M-degree (a1,az,a3,as,as,ae) with aj and a;
both non-negative and at least one of the integers a; or a positive. It follows, from
(5.3.1), that every non-zero entry of every differential matrix from &4 ®g; Im(Ay, )
has M,-degree

an,r(a17a27a37a47a57a6> = (ral + (n _r)a27ra_37ra47rd57rd6)7

with ra; + (n — r)ay positive. Thus, By O Im(A, ) is an My-homogeneous res-
olution of Ho(84 ®g; Im(A, ) and no units appear in the differential matrices of
this resolution. We conclude that &, O Im(A,,’,) is the minimal M,-homogeneous
resolution of Ho(®4 ®g; Im(Ay, ) by free Im(Ay r)-modules. O

The final step in the proof of Theorem 7.5 is to show that — @y, 7, P, carries

a particular acyclic complex of free Im(Ap,)-modules to an acyclic complex. The
proof is somewhat delicate because the inclusion map Im(A, ) < Py is not a flat
ring homomorphism. Indeed, it is clear that the inclusion map

R =k[x*,x’] — k[x] =R

is not a flat ring homomorphism; for example,

k[xz,x3] k[x27x3]
Tor (<x2,x3>k[x2,x31 -kl

is far from zero. On the other hand, there do exist k[x?, x*]-modules M for which

(73.1) T (M | k[x]) = 0.
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k[x? %3]
(x?)ke[x* 7]
modules M with property (7.3.1).

Lemma 7.4 has many hypotheses, but almost no proof. We refer to the technique
as “lifting a resolution over the ring R to a resolution over the subring R"”. When
we apply Lemma 7.4 in the proof of Theorem 7.5,

In particular, M = has property (7.3.1). In Lemma 7.4 we identify many

Im(A, ) will play the role of R,

P, will play the role of R,

ImA
Zoar will play the role of Ho(F'),
Cd,n,r

M, will play the role of ¢,

and the subgroup of M,, generated by

(7.3.2) { m(1.0); M(0,r,0,0,0)s (0,0,r,0,0)> (0,0,0,r,0)> 72(0,0,0,0,r)s "(0,n—r,0,0,0)> }
M0,0,n—r,0,0)> 1(0,0,0,a—r,0)5 1(0,0,0,0,n—r)

will play the role of ¢’.

Lemma 7.4. Let R be a commutative ring which is graded by an Abelian group 9.

Suppose that 9' is a subgroup of ¢ and that R’ is the subring of R defined by the
following rule. If r is a homogeneous element of R, then

(7.4.1) ris in R if and only if the degree of ris in ¥’
Let
Bi d; Bl d BO
F: - — @R[-m] —>@R[ mi_ 17]]—> = P R[-mo ;] =0
j=1 j=1 j=1

be an acyclic, 9-homogeneous, complex of finitely generated free R-modules. Sup-
pose that every twist m; ; is actually an element of 4'. Then

Bo
F - —>€BRI —mj_j] —>@R —mj_1j] —> g1 ~~-d—l>@R/[—mo7j]—>0
j=1

is an acyclic, 9’ —homogeneous, complex of finitely generated R'-modules and
F® r R
is a 9-homogeneous resolution of Hy(F') @ R by free R-modules.

Proof. Each map d; of F may be represented by a matrix. Each entry in each matrix
d; is in R’ (because of hypothesis (7.4.1) and the hypothesis that each m; j is in ¢").
The product d;d;, is zero in R; so the product is also zero in R. Thus, F’ is a
complex of free R’-modules. If & € (F); is a homogeneous cycle in F’, for some
positive i, then & is a homogeneous i-cycle in F. The complex F is acyclic (and
i is positive); so, & is a homogeneous boundary in F;. In other words, there is a
homogeneous element = in [; with

(7.4.2) di1(8) =&,
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View equation (7.4.2) as matrix multiplication: d;y; is a matrix and E and & are
column vectors. Each entry of d;;| and each entry of & is homogeneous, is in R/,
and has degree in the group ¢’; furthermore each entry of Z is homogeneous and
is in R. Tt follows that each entry of Z also has degree in ¢’. Thus, according to
(7.4.1), each entry of Zisin R’ and E € (F'); ;.

We have shown that F’ is a resolution of Hy(F’) by free R’-modules. Apply
— ®gr R in order to conclude that ' @ R (which is equal to [F) is a resolution of
Ho(F') @& R by free R-modules. O

Theorem 7.5. Retain the data of 5.1. View P, as a B-module by way of the ring
homomorphism Ay, re B — P, of Remark 5.3.(a). Then the complex &4 O Pyisa

resolution of Qg n r by free P,-modules.

Proof. In light of (7.0.1) and Lemma 7.2, it suffices to show that — ®y,3, ) Fa
carries the acyclic complex &4 Qg Im(Ap,r) to an acyclic complex.

We know from Corollary 7.3 that &4 ®g Im(Ap ) is the minimal M,, homoge-
neous resolution of Ho(&4 ®g; Im(Ap,r)). We know from Theorem 4.1 that Gg p
is the minimal Mp-homogeneous resolution of Oy , , by free P,-modules. We ap-
ply Lemma 7.4 to “lift” Gz, from from an acyclic complex of free P,-modules
to an acyclic complex Gﬁin of free modules over the subring Im(A,,) of By.
According to Lemma 7.4 t7he “lift” G:ln , of G4, will be another minimal Mp-

homogeneous resolution of Qg , , by free P,-modules; hence Gfl . Will be isomor-
phic to &4 ®g Im(A, ;). Lemma 7.4 guarantees that G/, . Dtm(An,) P, is acyclic;

50, ((’5d D Im(A,,J)) ®im(,,) Fn is also acyclic.

It remains to show that all of the hypotheses of Lemma 7.4 are satisfied. Let
R = P, and F be the resolution Gg nr from Theorem 4.1. The resolution G4, , is ¥ -
homogeneous for ¢ = M,. Observe that every twist that actually appears in Gg p
is in the subgroup ¢’ of (7.3.2). Observe, also, that Im(&n,), which is recorded in
(7.0.2), is equal to the subring of P, which is generated by the set of homogeneous
elements 0 in P, such that the M,-degree of 0 is an element of 4’. The hypotheses
of Lemma 7.4 are satisfied and G nr is minimal M,,-homogeneous resolution of

Ho(Gy ) by free Im (A, »)-modules.
It should be observed that the zeroth homologies all behave correctly:

Ho(64) = B/ 4P,
Im(A,,)

Cd,n,rlm(An,r) N

Ho(Ganr) = Qdnr-

Ho(@d ®,i§ Im(A,,,,) =

‘We conclude that
(o) ®;i§ I'_)n = B,y ®‘1_3 Im(A,,,) ®Im(5n,r) I‘_)n

is the minimal M,-homogeneous resolution of Qg , by free P,-modules. U
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8. THE STRUCTURE OF THE “UNIVERSAL RESOLUTION” &,.

We proved in Theorem 7.5 that for each non-negative integer d there exists a
single “universal resolution” &, such that for each pair n,r, which satisfy (1.1.1),
every resolution Gy, , can be obtained from &4 by way of a base change. The
resolutions {Gg4,,} are the main object of study in the present paper as well as
in the paper [22]. Thus, the resolutions {&,} become resolutions of significant
interest. In the present section, we give the explicit description of the infinite tail
of each B4; we also give the multi-degrees of all of the Betti numbers in each &,.
In particular, we give the multi-graded Betti numbers for (&,),. The differentials
entering and leaving (&), involve polynomials of high degree and a large number
of terms.

The results of Lemma 8.1 are interesting in their own right and they are enor-
mously important in the proof of Corollary 10.2, which is the the main theorem of
the paper.

Lemma 8.1. Fix a non-negative integer d and a field k of characteristic zero. Adopt
the setup of Data 1.3 and Notation 2.4.

Then the minimal 9N-homogeneous resolution &4 of Qg by free P-modules has
the form

Ba: . (Ba)s > (Ba)a 25 (Ba)3 2 (B4)2 2 (B4)1 2 (Ba)o,
with
(B4)0 =",
4
(Bg)1 =

q_3[—(d—|— l,d,Zj)],
1

~
I

Bl—(2d+3,2d —1,1))4
(Bg)2 = © & 53[—(2d+2,2d,zj+zk>]d+1

1<j<k<4
@ P[—(2d+1,2d+1,0)1,
(&,) Kj?/igqsﬁ[_(m—l—%+3,2d+%,zj+zk+zé)]2d+l
d)i — > =4 ' .
@@1§j§4q3[—(2d+%+1,2d+%’zj)]2d+1,
for i odd with 3 < i, and
Pl (2d + 5 +4,2d + 5, P!
(Ga)i = @K@kqm[—@d%—%+2,2d+%,zj+zk>]2d+1
<j<k<
EB’B[—(M—F%,M_;_%’Q)]MH,
forieven with4 <.

Proof. We saw in (5.3.1) and in the proof of Corollary 7.3 that the group homo-
morphism 0, : 9 — M, carries the 9)i-homogeneous twists in &, to the M,-
homogeneous twists in Gy, for all (n,r), as described in (1.1.1). This happens
even though in the proof of Corollary 7.3, we know the M,-twists of G4 5, ,; but we
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do not yet know the 9JI-homogeneous twists of &,. Nonetheless, it is an easy exer-
cise to verify that the 9J1-homogeneous twists for &, that are listed in the statement
of Lemma 8.1 are carried by o to the My-homogeneous twists for G4, , which
are listed in Theorem 4.1. It is clear that any given o, » has a large kernel; but it
is also clear that the only twist from any ®, which is in ker, , for all pairs (n,r) is
ZEer0.

Indeed, suppose m is a twist from some &4, with m € ker, , for all pairs (n,r)
which satisfy (1.1.1). Let 9-degm = (c1,c¢2,¢3,¢4,¢5,¢6). Apply Data 1.3 to see

that
Z
nz.>

C3=C4=0C5=C6=0 1in for all n,

%]

and
(8.1.1) rci+ (n—r)cy =0 for all (n,r) satisfying (1.1.1).

It is immediately clear that c3 = c4 = ¢5 = ¢ = 0 in Z. Now apply Lemma 8.2 to
see that ¢; = ¢p. It follows from (8.1.1) that c; = ¢, =01in Z. ]

Lemma 8.2. Adopt Data 1.3. Let m € O be a homogeneous twist which appears
in &4, for some non-negative integer d. The following statements hold.

(a) Either m is zero or there exists a non-zero homogeneous element 0 € 33 such
that the M-degree of © is equal to m.
(b) If the 9M-degree of m is equal (c1,c¢z,¢3,c¢4,C5,C6), then

c1=cr+c3+cq4+c5+cq-

Proof. We prove (a) by induction on the position of the twist m in the resolution
B,4. The only twist that appears in B¢ = ‘P is zero.

If m appears in (84)1, then the degree of m is equal to the degree of a minimal
generator of the ideal € .

Suppose m is a twist from (&4);, for some i with 2 < i. In this case, m is the
M-degree of some basis element e in (&;);. The resolution &, is a minimal 9i-
homogeneous resolution; so e is not sent to zero. Thus, dege = degp + m’, for
some non-zero homogeneous element p € P and some m’ which appears as an
9M-homogeneous twist in (B4);—;. By induction degm’ = degp’ for some non-
zero M-homogeneous element p’ of B. Thus, pp’ is a non-zero M-homogeneous
element of 3 with degm = deg pp’. This completes the proof of (a).

We prove (b) by showing that each monomial in ‘P satisfies the equation. If
p= yi”ygzy?yi“wll’lwgzw?wi“ is a monomial in ‘B and deg p = (c1,¢2,¢3,¢4,¢5,C6),
then according to Data 1.3,

cir=ay+ay+az+as, co=by+by+b3+b3+bys, c3=a1—by, c4 =ax—bs,
¢s = a3z — b3, ce = as — by,
and it is clear that ¢ +c3+c4+c5+c6 = 1. OJ
Lemma 8.3. Adopt the data of 1.3. Then the differentials
()5 2> (Ba)a 2 (84)3
have the form given in Table 5, where each M;; and each Nj; is an invertible

(2d+1)x (2d+1)
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matrix of constants.

Proof. Decompose ($4)3 as

P[—(2d +3,24,0,1,1,1)]**! & B[—(2d +3,2d,1,0,1,1)] ™!
®P[—(2d+3,2d,1,1,0, 1) o P[—(2d +3,2d,1,1,1,0)] !
®P[—(2d +2,2d +1,1,0,0,0)?+! @ PB[—(2d +2,2d +1,0,1,0,0)]24+!
&P[—(2d +2,2d +1,0,0,1,0)*2+ @ PB[—(2d +2,2d +1,0,0,0,1)]24+1

(B4)4 as

P (2d +4,2d,1,1,1, 1) o P[—(2d +3,2d +1,1,1,0,0)]4*!
&P[—(2d +3,2d +1,1,0,1,0)* "' & B[—(2d +3,2d +1,1,0,0, 1)]**"
OB[—(2d +3,2d +1,0,0,1,1)*4 T @ P[—(2d +3,2d +1,0,1,0,1)]22+!
® B[~ (2d+3,2d +1,0,1,1,0)2*! & B[ (2d +2,2d +2,0,0,0,0)]4*",

and (&4)s as

Bl—(2d +4,2d+1,0,1,1,1)]¥ " & B[—(2d +4,2d +1,1,0,1,1)]%4*!
SB[~ (2d +4,2d +1,1,1,0, 1) @ P[—(2d +4,2d +1,1,1,1,0)"!
&P[—(2d +3,2d +2,1,0,0,0)]2+! @ P[—(2d +3,2d +2,0,1,0,0)]24+!
®P[—(2d+3,2d +2,0,0,1,0)* " & P[—(2d +3,2d +2,0,0,0, 1),

The only possible non-zero 9Ji-homogeneous maps

951 (Bq)s — (Gg)a and  gq: (Bg)4 — (Gg)3

have the form of the matrices in Table 5, for some matrices of constants M;; and
N;j. The matrices M;; and N;; are invertible for the same reason that the matrices of
Corollary 4.2 are invertible. If any of the M;; or N;; were singular, then f would be
an element of the ideal generated by three of the eight variables yy,...,y4,wy,..., w4
and this is not possible. U

Remark 8.4. In light of Theorem 7.5, the matrix M;; from Table 2 is equal to the
matrix M;; from Table 5 and the matrix N;; from Table 2 is equal to the matrix N;;
from Table 5.

9. ORDER IDEALS OF SYZYGIES.

We use the theory of order ideals (see, for example, [12, page 397]) to distinguish
the non-free indecomposable Maximal Cohen-Macaulay modules of the ring *13 of
1.3.

If E is a module over the commutative ring R, then E* = Homg(E, R) represents
the R-dual of E.

Definition 9.1. Let R be a ring, and let £ be an R-module. For e € E, the ideal
Ok(e) ={0(e) |0 €E™}

is the order ideal of e in the module E.



THE SYZYGIES OF THE IDEAL (x,x)',x),x}) OVER ANY FIELD.

The differential g4 : (B4)a — (&4)3 has the form

yiMyy 0 0 0 woMis | —w3Mig | waMi7 0
—y2M>; 0 waMps | —w3May | wiMas 0 0 0
ysMs1 | waM3; 0 —woM34 0 wiM36 0 0
—yaMyy | wsMyy | —woMy3 0 0 0 wiMy; 0
0 —y2Msy | —y3Ms3 | —ysMsy 0 0 0 wiMsg
0 yiMe> 0 0 0 —y4Mes | —y3Me7 | waMeg
0 0 y1iM73 0 —y4M7s 0 v2M77 | wiMzg
0 0 0 yiMgy | y3Mgs | y2Mge 0 w4 Mgsg
and the differential g5 : (&4)s — (&4)4 has the form
wiN11 | —waNi2 | w3Ni3 | —waNyy 0 0 0 0
0 0 YalN23 | y3Noa | —walNas | wiNag 0 0
0 Y4N32 0 —y2N34 | —w3Nss 0 w1N37 0
0 —y3Nao | —y2Ns3 0 —W4Nas 0 0 wi1Nsg
y2Ns1 | y1Nsy 0 0 0 0 —w4N57 | w3Nsg
—y3Ne1 0 Y1Ne3 0 0 —w4Ne6 0 w2 Neg
YalN71 0 0 Y174 0 —w3N76 | walN77 0
0 0 0 0 YiNgs | y2Nge | ¥3Ng7 | yaNgg
TABLE 5. The differentials (64)s5 = (G4)4 =5 (B4)3, as de-

scribed in Lemma 8.3. The matrices we have recorded have entries
in P; the matrices g4 and gs are the images of these matrices with
entries in *B.

Notice that the notion of order ideal is intrinsic to the data e € E. This notion
has nothing to do with how E is presented. On the other hand, when possible, it is
convenient to use information about the presentation of E to calculate order ideals.

Lemma 9.2. IfR is a ring and o : E — F is an injective R-module homomorphism
of finitely generated R-modules, with F free and o* : F* — E* surjective, then, for
each element e of E, the order ideal Ug(e) is generated by the coordinates of o.(e)
with respect to any basis for F.

Proof. Letuy,...,u, be an arbitrary basis for . Define uj,...,u;, in F* by

() 1, ifi=j,and

u; (uj) =

P 0, ifij.

Observe that uj,...,u, generate F*. The hypothesis that o is surjective ensures

that if ¢ is an element in E*, then there exists @ € F'* such that ¢ = ® o . It follows
that uj o, ...,u; o0 is a generating set for E*. Consequently, O (e) is generated
by (ujoa)(e),...,(u;on)(e); and therefore, Uf (e) is generated by the coordinates
of a(e) with respect to the basis uy,...,u, for E*. O

Observation 9.3. Let R be a Gorenstein ring and

SRR CNy R Ny RNy LNy LN
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be a periodic exact sequence of finitely generated free R-modules. Then, for each
element e € Fy, the order ideal Oy 5, fo(e) is generated by the coordinates of fo(e)
with respect to any basis for Fy. In particular, if F) = ®jRey j, F1 = ®;Re; j, and
the maps fo and fi are the corresponding matrices, then Oy 1) foleo,j) is the ideal
of R generated by the entries of column j of the matrix fo and Oy ) f1 (e1,;) is the
ideal of R generated by the entries of column j of the matrix fi.

Remark. We view an element of /| as a column vector v. The homomorphism
f] 1 — Fy

sends the column vector v to the column vector fjv, which is the product of the
matrix f1 and the column vector v.

Proof. The R-module f;(F;) is an i" syzygy module for all non-negative integers i;
hence, fi(F}) is an MCM R-module. It follows from local duality (and the fact that

the canonical module of R is R) that Extﬁ,( fi1(F1),R) = 0 for all positive integers j;
see, for example, [3, Cor. 3.5.11]. Apply Homg(—, R) to the short exact sequence

O—>f0(F0) ﬂFl %f1<Fl> —0

to obtain the exact sequence

F 0 (fo(Ro))* — Exth(fi(F1),R) = 0.

The assertion is now a special case of Lemma 9.2. U

Definition 9.4. Retain the usual 9i-homogeneous k-algebra P from 1.3. Let m
be the maximal 9)t-homogeneous ideal of B; so that P/m =k. If E is a finitely
generated 2-homogeneous P3-module, then define

ME) = max 4 dim E'+mE\| E’isaPB-submodule of E and
“\ mE ¢ €E' = Og(¢') C (51,52,53,54) |

Observation 9.5. Recall the matrices 2l and *B from Table 4 on page 6 and the
matrix g4 from Table 5 on page 25. The following statements hold:

(a) A(Im Q_l) = 1

(b) k(Im‘B)

(©) A(B) =

(d) x((lmm) ® (Im*B)? ©P°) = a, and

(e) MImgs) =2d + 1.

Proof. We prove (a). Let the domain of 2 be called @ 1‘13801 Apply Observa-
tion 9.3 to see that Gy, y(H(e0.1)) = (71,52, 73.74): but

Oma(A(e)) Z (51,52, 53,4),

for any minimal generator e of @}, Beo,.

(b) In a similar manner, we see that
ﬁlm%(%(8>) Z ()71’)727)_]37)_]4)5
for any e € B8\ m(P?).
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(c) If e € P\ mB, then Og(e) = B, which is not contained in (¥, 72,73,74); hence,
AP) = 0.

(d) This assertion is a consequence of (a), (b), and (c).

16d+8 _ 16d+8 _
(e) Let the domain of g4 be @ ‘Pe; and let W = P Pe;. Apply Observa-
i=1 i=2d+2

tion 9.3 to see that
Om(gs) (94(ei)) = (31,52,53,94), for 1 <i<2d+1;but
ﬁlm(g4)(g4(6)) < ()_)17)727)—737)_74)7 for any e € W\mW

(Keep in mind that each matrix M;; from Table 5 is invertible.) We conclude that
A(Imgs) =2d + 1. O

10. THE MAIN RESULT.
Corollary 10.2 is the main result of the paper. It establishes Conjecture 1.2.

Theorem 10.1. Let k be a field of characteristic zero, d be a positive integer, *J3 be
the polynomial ring

B =k[y1,y2,y3,y4, w1, w2, w3, w4],
f be the polynomial
f=yiwi+yaw2 +y3w3 +yaws
in P, B be the hypersurface ring B/ (f), €4 be the ideal

_ . d+l.d d+1.d .d+1.d .d+1.d
Q:d_(yl Wi, Yo Wp,Y3 W3,)4 wg)

of B, Qg be the quotient ring
Qg = P/C4B,
and 6‘31 be the third syzygy of Qg as a B-module. Then
&) (Im s
where ‘B is given in Table 4 on page 6.

Proof. Recall from Theorem 6.2 that the ideal J; = (€4, f) of P is perfect ideal of
grade 4; hence J3/74, which is equal to Qy4, is a Cohen-Macaulay ring of dimension
4. In particular, if 3 < i, then the i syzygy of Q4 as a B-module (denoted &) has
depth 7 and therefore is a maximal Cohen-Macaulay ‘3-module.

It is shown in [6, Prop. 3.1] that there are at most two isomorphism classes of
non-free indecomposable maximal Cohen-Macaulay (MCM) $B-modules. Indeed,
it is observed in [7, Remark 2.5.4] that there are exactly two non-isomorphic, in-
decomposable, non-free MCM $B-modules and these modules have rank 4 as B-
modules. (The ring 3 is a domain; see for example, [15, Prop. 22]. The rank of
a B-module M is the vector space dimension of K ®q M, where K is the quotient
field of 93.) In particular, these MCM ‘B-modules are Im B and Im%(, where B and
2 are 8 x 8 matrices with entries from T3 with 2B = flg.

At any rate,

flg =2AB and Iz =B,
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for 2l and B as given in Table 4 on page 6, and every non-free indecomposable
MCM ‘B-module is isomorphic to Im2( or Im®B. The fourth syzygy, (‘53, of the
B-module 9, is a MCM *B-module; consequently,

G4 (ImA)* @ (ImB)? © P,
for some non-negative integers a, b, and c. Notice that the minimal number of
generators of 63 is 8a+8b+c.
On the other hand, it is shown in Lemma 8.3 that (‘53 is equal to Im g4. In particu-

lar, the minimal number of generators of & is 8(2d +1). Apply Observation 9.5.(d)
and (e) to see that

a=MIm2A)* @ (ImB)? ©PC) = M(&5) = MImgy) = 2d + 1,
with
8a+8b+c=8(2d+1)
to conclude that a = 2d + 1 and b = ¢ = 0. Thus,
(10.1.1) G4 = (ImA)2+1,
We apply standard tricks involving MCM modules to show that in fact
G322 (ImB)* !,
Indeed, the 3-dual of the short exact sequence
06— 6460
is
(10.1.2) 0— (&))" = (B4)" = (63" =0

because EXtﬁli;(gfi’i;) = 0 by local duality. But,

(67)" 2 ((m2A)H1)* == (Im%B)* 1.

(The equality on the left is (10.1.1) and the equality on the right is obvious.) The
complex (10.1.2) is M-homogeneous and the minimal first syzygy of Im*B is Im 2.
Thus, ((‘5‘31)* >~ (Im2A)%*!. The MCM ‘B-module (‘5‘31 is reflexive; thus:

&5 = (63)" = ((ImA)+1)" = (Im)") ! = 1B+,
U

Corollary 10.2. Let k be a field of characteristic zero, and n, d, and r be non-
negative integers with 1 <r <n—1. Let N be the integer dn—+r, P be the polynomial
ring k[x1,x2,x3,x4), fa be the polynomial x} + x5 + x5 +x} in P, C4, , be the ideal
(5, x . x) of P, B, be the hypersurface ring P/(fn), Qanr be the quotient ring
Pa/CaprPn and Qi” be the third syzygy module of Qg nr as a P,-module. Then

3

Qg.,n,r is isomorphic to the direct sum of 2d + 1 copies of Qo,n,r
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Proof. Consider the rings B and Q4 = B/€4B of Theorem 10.1. Let (G,4,g) be
the minimal 9)1-homogeneous resolution of £, by free B-modules. We learned in
Theorem 10.1 that Im(g3) = (ImB)?4+!, We learned in Theorem 7.5 that & Qg P
is the minimal M,, homogeneous resolution of Py , , by free P,-modules. Thus,

Qz31,n,r =1Im(gs O Py) = (Im(% O —n))2d+1 = (ImB)M+1.
The final equality holds because A, ,(B) = B. O

11. THE CASEd = 0.

This brief section was promised in the introduction. We include enough informa-
tion to demonstrate that if A is the matrix of Table 1, on page 3, then A presents the
third syzygy of the B,-module Qg n r, in the language of (1.1.2).

The two-step Tate resolution which appears in Observation 11.1 is well-known;
see, for example, [29, Thm. 4], [23], or [11].

Observation 11.1. Adopt Data 1.1 withd = 0 and k an arbitrary field. Let E and
T be vector spaces over k of dimension 4 and 1, respectively. Let €,€;,€3,€4 be a
basis for E and t be a basis for T. Define k-module maps

0:E—P and 0:T — PyE

4

by o(g;) =xf and d(t) = ¥, X" "€;. Then the minimal homogeneous resolution of Q
i=1

by free P-modules is given by Gony = P(€1,€2,€3,€4,1;0), where Gonr is the free

Differential Graded P-algebra with variables {€;} of degree one and t of degree two

and d is the differential on Go n . In other words, (Gopr); is

P, if j=0,

PRE, ifj=1,

(P& DoT @k NE) & (P& DiT 2 \°E), if j =2,

(Pe&xDi 1T & N E)® (P& DT & \'E), if3<jand j=2i+1,
and

PRy Di 2T @k N*E) @ (P@y Di\T @ N\°E
{( Rk Di2T @ N"E) & (P @x Dia T @k \°E) if4<jand j=2i

S(P 2 DT @ \°E),

Use the ordered bases

e iereses, tVerer, tVe1e5, tWeres, tVeses,

i+1)

£
t(i)8284, l‘(i)8283, t(

for (Gonr)2itos

l‘(i_l)82£384, t(i_1)818384, t(i_1)£18284, l(i_1)8182£3, l‘(i)El,

gy 10gs. g,
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for (Gonr)2it1; and

i—1)

t(i72)81828384, t(i71)8182, l‘( €1€3, t(i71)8184, t(i71)8384,

i-1)

t(i_1)8284, t( €3, t(i)

for (Gonyr)ai. The matrix for (Gony)ait2 — (Gonr)2it1, when 1 <1, is A, for A as
given in Table 1; and the matrix (Gopnyr)2i+1 — (Gony)2i for 2 <i, is B, for B as
given in Table 1.

Remark. The matrix for the differential g3 : (Gonr)3 — (Gonr)2 is obtained from
B by deleting row 1; nonetheless, the P,-modules Im B and Im g5 are isomorphic as
the commutative diagram with exact rows

ps _A ImB 0

P8
-

n n
L Ly L JLEN (N Sp—

demonstrates, where T is induced by the homomorphism PS — P which deletes
the top entry.

12. THE MATRICES FROM Lg ,  AND £5 FROM THEOREMS 6.1 AND 6.2.

The complexes Ly , , and £4 are described in Theorems 6.1 and 6.2. In this sec-
tion, we give the precise form of the differentials which appear in these complexes.

12.1. The key to the notation in Tables 6-20. For each three tuple of parame-
ters (a,b,c), let t%?¢ = (f; ;) be a b x ¢ matrix. The entry f;; in row i and col-
umn j of % is a homogeneous polynomial of degree a in the polynomial ring
k[E1,E2,E3,E4]. We use T4P€ to denote the matrix (f; ;(x,x%,x%,x%)) and T4 to
denote the matrix (f; j(yiw1,y2w2,y3w3,y4w4)). (In other words, the entry of abe
in position i, j is the polynomial f; ; evaluated at the (place-holder) variables &;,
&2, &3, &4; the entry of TP in position i, j is the polynomial f; ; evaluated at X7,
X%, X%, x%; and the entry of %€ in position i, j is the polynomial fi,j evaluated at
YIW1, Yawa, Yaw3, yawa.) We use subscripts to distinguish the various matrices. In
particular, the matrix T,ﬁ ’é”’f appears in row ¢ and column T of the matrix for the
differential in position T.

Notice that we make no claim about the polynomial f; j(§;,&2,83,4) that ap-
pears in row i and column j of the matrix %% other than the fact that it is homoge-
neous of degree a.



[ PCm0000)" | P(emgro00)' | P(em@oro0)' | P(em@oor)' | P(—m@ooon)' |
11 ZARI ZARI a1 AN
P RN LR URE Ry URY

TABLE 6. The matrix for ({gp,)1.

1 2 3 4 5 6
P(—=mgi1r0) | P(omgiire) | P-masirg) | Pmaiir) | Pempa—10)* | P(=modry 7))
Pl=mag)' | AT BT ATs L PR R s x vl B L AT
Dol | ALy | ALYy | 4Dy | g | AT
G Ty Tyy) By | BN | et Mg
AT | AAThus | Tyy | AT | AT o | g
AT | BTy | AT | By [ T | g

TABLE 7. The left side of the matrix for ({g,,)2.

‘QTEI ANV 99A0 (xS & lx) Tyaar aHL 40 SAIDAZAS FHL

1€



7 8 9 10 i} 2
P(=marzr2)* ™ | POomars 4r)* T | P(om0arar) | P(omaar ) | P(ompars ) | P(-moai0)* !
[ a2 o T xgngngl Tdi1 oo 22,?,15 Td i T 22?1% Tdi1 AT
2 erzdzl7d+1 erzdilédH X T zdz é’LdH Xy 2dz %617‘1“ X T 4 2‘12}’1“”1 X7 zd’zli(?l
T T i A N A A7 G 2
I A Sl A Gl {1
5 || sy AT il T L1 XETzd.’sl,i‘é“ T AT

TABLE 8. The right side of the matrix for (g, ,)2.

[4%
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1 2 3 4

P(=m(2g 4 1,) "™ | P(=m(241,720) " | P(=magi1,23) ™ | P(=miag i1 o)™
L P=maiige) Ty AT T ;}'};LMH T T
2 P(=mg11rz)) X" 3‘12_%’1’2‘”1 Tf’l’z‘”l AT S [1.2d+1 A 35{2741‘71,2:1“
3 P<_m(d+1,rz3)> xrxn r 3737;,1,211—0—1 xr)c” r 3737;1,2(1—0—1 T3d,1,2d X’3' rxz 31{3741‘,1,2d+1
5 P | T, T g T g d TR
5 P(-mpg_1p)? 0 0 0 0
6 P(_m(Qd,rz1+rzz)>d+ Xn_rT?,Ongl’Zd—i_l x'll_rT306d;1’2d+l 0 0
7 P(—myq, rzl+rz3))d+ T 3Q7d1+1,M+1 0 o 30,74;1,241“ 0
8 P(-mpapyir) || A TTigy 0 0 O T
9 P(- m(2d, rzz+rzg)>d+ 0 xg’_’T3O9d;'1 2d+1 xn—rT309d;H 2d+1 0
10 P( mq, rzz+rZ4)>d+ 0 XZ— 305)—.1—21,2d+1 0 xg—r 30%;1,%4—1
11 P(— m(ZdrszrrZ4)>dJr 0 0 xz_r 30’1‘11'}_31’2‘1"'1 xg‘_’ 3071‘11;1-‘2‘“‘1
12 P(—m (w+179))d+1 < 30f12+11 2d+1 XST391¢127+21,2,1+1 o 30f12+31 2d+1 %, 3(){4;41 2d+1

TABLE 9. The left side of the matrix for ({4 ,)3.

‘QTEI ANV 99A0 (xS & lx) Tyaar aHL 40 SAIDAZAS FHL
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5 6 7 g
P(=ma0,rr)* ™ | P(=mparorn)* ™ | P(=mparron) ™ | P(=mparrro)™!
1 lel_rxgxgsz;f;?LM—H xgszzl_,é7l72d+l xéxZTf;;7l’2d+l XEXS ;{1_751§7172,1+1
2| e, PP g pd B DT T, [T
3 xEXZng,_,sl’l’ZdH xpl-xZT;{;é,l,QdH XA 3:{3—;,1,2”1 ¥ ;;é,l,ZdH
4 XEXQT§{;;7I’M+I X 3‘17;%71’2‘”1 b ;l;;,l,zdﬂ qugxgxﬁ*’ 3{4—75,1,241“
5 xrlt—r 305_1{,5%—0—1 xg—r 3%(15&1—0—1 xg—r 30%(17,7241—0—1 xg—r 3(?3‘{782‘1_‘—1
6 0 0 szggl;rl,de x§T3O’6d;1’2d+l
7 0 x2T30’7d6H’2d+1 0 x§T30’7d;1’2d+1
8 0 ng30,8dg1,2d+l XET307§17;L1,2¢1+1 0
9 XQT%{SH,MH 0 0 xr1T3(379¢{§L1,2d+1
10 ng3Oﬁ)47-51,2d+1 0 x€T30ﬁ;L71.,2d+1 0
0 I e AT 0 0
12 0 0 0 0

TABLE 10. The right side of the matrix for ({4 ,,)3.
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1

—m(2d+2,9))d

2

d
_m(2d+1,r,r,0,0))

3

d
_m(2d+1,r,0,r,0))

4

d
—M(2d+1,70,0.r))

—r0,2d+1.d

4,1,1

0.2d+14d
AT

0.2d+14d
RE

02d+1d

T4 a

0,2d+14d
421

0,2d+1d
xr 422

0

0

02d+1d
431

0

02d+1.,d
433

0

0.2d+1d
4.4.1

0

0

02d+14d
T444

0

0

0

0

02d+1d
T463

_rT

02d+14d
4,6.4

—r02d+1.d

0

02d+1d
4,7,4

0| LN | N W=

0
0
0

XZ 4,72
%

—r02d+1.d
482

—r 02d+1,d
483

TABLE 11. The left side of the matrix for ({4, )4

‘QTEI ANV 99A0 (xS & lx) Tyaar aHL 40 SAIDAZAS FHL
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5 6 7 8
P(=mpas10rr0)" | P(—m2a110000)" | P(=M@ds1.00r0)" | P(=ma)* !

1 0 0 0 0

5 e i 0 0

I i I -

4 0 BTyre HTypg 0
5 ﬂ_rTf%ZgHﬂ x5 T4(?252.‘61+1 ‘ x5 T ’52(7”1’[1 X1 T4(?752,g+17d+1
6 0 0 )gllfr 407,627171+1,d xg 407,627t§+1,d+1
7 0 xrll—r T4(?772,‘61+ 1d 0 xg Tﬁ%“ d+1
A A — TR

TABLE 12. The right side of the matrix for (g .,)4.
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’ H ;’B<_<17179))1 ‘ (’B(_(d_F l,d,Zl))l ‘ s"B(_(d—i_ 17d7Z2))1 ‘ (’B(_(d—i_ 1,d,Z3))1 ‘ m(_(d_F 17d7Z4)>1 ‘
T 11 1,1 1,1 1,1
BY ‘51,1,1 Yid112 Y22113 Y3T11,1,4 )’4T1i,1,5
TABLE 13. The matrix for (Iz);.
1 2 3 4
P(—@+2d+1,z21)) [P(=@+2,d+1,22)) | P(—(@+2,d+1,z3)) | P(—(d+2,d+1,24))
11 11 .1 1,1
1 P(—(1,1,0))! Y1221 )’Z‘Iglz ¥32213 Ya2o 14
2 P(-(d+1,d,2)) Ty2) WSy, w3 Th5 wiyaTyy
3 P(—(d+1,d,22)) yiwaSys T;jéj; woy3 Ty Wzyﬂgféj};
4 P(—(@d+1.d,z3)) y1W3Tg’i’i y2W3Tg’i’é ‘32:4f; W3y4Tg:4}1:411
5 P(—(d+1,d,z)) yiweTy's | ysTy's) yiwsTys's %54

TABLE 14. The left side of the matrix for (Iy),.

‘QTEI ANV 99A0 (xS & lx) Tyaar aHL 40 SAIDAZAS FHL

LE
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5 6 7 8
PB(— (2d+32d L) | PB(—(2d +2,2d,21 +22))%H! | P(—(2d +2,2d,21 +23))% ! | P(—(2d +2,2d,z1 +24) )4
N y1y2y3y432 ¥ ,l,d ylyﬂ%fil;l,l,dﬂ y1y3ggd]—7l,l,d+l y]y4g§filjgl.,l,d+l
2 )’2y3y43'21,2,5 yﬂg’;’?l V3 Tg’l’dH V4 zéé’“
3 Y1y3y4f5‘213715’1’ 2’;"6”1 y1W2y3T‘217 L VIW2Y4 2318’1"”1
4 ym’zmﬁg}gl’d }’1)’2W3T21116’17d+1 Té’i’?*‘ YIW3y4 2418’1’d+l
5 yl)’2y3’5§5715’1’d y1y2W4Td 1’1’[”1 y1y3W4Td A )’le717d+1
TABLE 15. The middle of the matrix for (Iz)s.
9 10 11 12
P(—(2d +2,2d, 20 +23))* " | P(—(2d +2,2d, 2 +2))"*" | P(—(2d +2,2d, 23 +24))*"" | P(—(2d +1,2d +1,0))""!
0 - {{?11*91,1,&1 y2y4,sidljllo,l,d+l y3y4g§dlfl1l,1,d+1 $%77117121+1
2 W1y2y3 219’1’d+1 W1Y2Y4 2511’(1)"”1 W1Y3V4 221{}"”1 ‘Z‘jé’fjl
3 yﬁg'w 4T5500 W2y3y4 2311’}"”' T
4 »Tous yowsyaTy 4ot 43'5,21"11? 1 WISt
5 y2yawaTyss %955 »I9sar waTys s

TABLE 16. The right side of the matrix for (I).

8¢



1
gp(_(zd"i'z?zd"i' 1721))2d+1

2
‘B(_(Zd+272d+ laz2))2d+l

3
m(_(zd+272d+ 17Z3))2d+1

4
33(—(2‘1‘1'2>2d+ 1>Z4))2d+1

I P=@+2d+12)) Ak wiyn Ty 5 wiysTe 5 wipsT5 g
2 P(-d+2d+1.2)) yiwaSipy Tt w2y T, Wiy
3. P(-@+2d+1,z)) yiwsTas ! ywsTaas T35 wipa T3y !
o RC@2dia) s O O i

5 P(—(2d+3,2d—1,1))4 0 0 0 0

6 m(_(Qd+272d;Z]+Z2))d+l Wz(zg,téjl,ld+l Wl{zg)jtéijz—ljd—s—l 0 0
ISR eyl T o T 0
B2 2z e o ; Tl
5 (12,2442 0 ST T ;

10 P(=(2d+2,2d,2 +24))™" 0 wiT30, " 0 W T3
11 P(—(2d+2,2d,23+24)) " 0 0 W4T(3):tlifr.3l72d+l W3Tg:(11ﬁ’2d+l
N T R EeT VGl N e O i Y

TABLE 17. The left side of the matrix for (Iz)s3.

‘QTEI ANV 99A0 (xS & lx) Tyaar aHL 40 SAIDAZAS FHL
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5 6 7 8
P(—(2d +3,2d,0,1,1,1))%+1 | p(—(2d +3,2d,1,0,1,1))%+! | P(—(2d +3,2d,1,1,0,1))%4+1 | p3(—(2d +3,2d,1,1,1,0))% !

1 wiyayzyaSa 2! ynaTa g ! v e 5! yays e
2 yaTh s 4t yiwaysyaTa o y1yaTa L5 ! yiysTa,g
3 Vay4 33715’1’2‘”1 V1Y4 33,16’1’2‘”1 y1y2W3Y4‘5§327’1’2d+1 ylyz‘zéi;}g’l’zdﬂ
4 23T s yaTege Y12 Ta 45! yiyayswaTs g
5 wiT35s w56 Wi T35t TSt
: 0 o il il
7 0 y4r£(3)7z;4gl,zd+1 0 ngzggl,wﬁ
g 0 3(22,1;;1,%“ Zfzg,gtl,MH 0
9 naTyes ! 0 0 T AT
) o i o
11 nHhs Nt 0 0
2 0 0 0 0

TABLE 18. The right side of the matrix for (Iz)s3.
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1 2 3 4
P(—(2d +2,2d+2,0))* | B(—(2d +3,2d + 1,21 +2))* | B(—(2d +3,2d + 1,21 +23))* | B(—(2d +3,2d + 1,21 +24))*

I P(—(2d+2,2d+ 1,24 legﬁﬂ,d yﬁgﬁzfzﬂd y352:%+17d y452ﬁ+l’d

2 P(—(2d+2,2d +1,2,))%4] waTyn nTyrs 0 0

3 P(—(2d+2,2d+1,73))4+! wiTony ¢ 0 1T 0

4 P(—(2d+2,2d + 1,74))4+! waTyay 0 0 Ty

5 P(—(2d +3,2d,0,1,1,1))%+1 0 0 0 0

6 B(—(2d13,2d,1,0,1,1))%4+1 0 0 Wi Ty ey wiTyey

7 P(—(2d+3,2d,1,1,0,1))2+! 0 waTy s 0 Wy

8 P(—(2d+3,2d,1,1,1,0))%! 0 wiTyes 2 Ty 0

TABLE 19. The left side of the matrix for (Iz)4.

‘QTEI ANV 99A0 (xS & lx) Tyaar aHL 40 SAIDAZAS FHL
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5 6 7 8
P(—(2d +3,2d+1,20+23))% | B(—(2d +3,2d + 1,20+ 24))¢ | B(—(2d +3,2d + 1,23 +24))? | B(—(2d +4,2d,1))4+!

1 0 0 0 0

B 35%«?1,4 y4(z2§d6+l,d 0 0

3 2¢2§fij+],d 0 452?71;1,‘1 0

4 0 yzi{gjd;l,d yﬁg%ﬂd 0

5 W452,§%+1,d W3{32§¢716+1,d zfsgéfl;rl,d ylzgﬁflgﬂ,dﬂ

6 0 0 W132:%+1’d 232:?8“;1“

7 0 W1§2:%+17d 0 y3‘sg:§f18+l,d+l

8 wﬂgﬁfi;l’d 0 0 yﬂg:ézgﬂ,dﬂ

TABLE 20. The right side of the matrix for (Iz)4.
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