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Abstract. Let R be a commutative noetherian ring and ϕ : F → G be a homo-
morphism of free R−modules where rank F = f and rank G = g. Fix an element
bg+1 ∈ ∧g+1 F and a generator ωG∗ for

∧g G∗. The module action of
∧• F ∗ on∧• F produces the element b1 = [(

∧g ϕ∗)(ωG∗)] (bg+1) in F . Let J denote the image

of b1 : F ∗ → R. Assume that grade J = f − g, which is the largest grade possible
and is attained in the generic case. The ideal J may be interpreted as the defining
ideal of the degeneracy locus of a regular section of a rank f − g reflexive sheaf. It
may also be interpreted as the order ideal of an element in a second syzygy module

of rank f − g. Also, J may be interpreted as the defining ideal for the symmetric
algebra of a module of projective dimension two. Migliore and Peterson have studied
the ideal Junm, which is the unmixed part of J . Under geometric hypotheses, they
have shown that R/Junm is a Cohen-Macaulay ring and they have resolved this ring.

Furthermore, if f − g is odd, then Junm is a Gorenstein ideal and is not equal to J .
On the other hand, if f −g is even, then Junm = J . In the present paper, we produce
the resolution of R/J by free R−modules in the case that f−g is even and (f−g−2)!
is a unit in R. Our resolution is minimal whenever the data is local or homogeneous.

Our resolution is built from the differential graded algebra (
∧• F ∗<X1, . . . , Xg>, d),

where the restriction of d to
∧• F ∗ is the Koszul complex associated to b1 : F ∗ → R

and the degree two divided power variables X1, . . . , Xg have been adjoined in order

to kill the cycles ϕ∗(G∗) ⊆ ∧1 F ∗. The acyclicity lemma is used to prove exactness.
If g = 1, then the ideal J is equal to the Huneke-Ulrich almost complete intersection
ideal I1(yX), where y is a 1 × f matrix and X is an f × f alternating matrix. The
resolution of this ideal is already known.

Let R be a commutative noetherian ring, and let F and G be free R−modules
of rank f and g, respectively, with g < f . Consider an R−module homomorphism
ϕ : F → G. Let M and K represent the cokernel and kernel of ϕ, respectively.
Assume that the R−ideal Ig(ϕ), which is generated by the maximal minors of
ϕ, has the largest possible grade, as permitted by the determinantal bound of
Eagon and Northcott; namely, grade Ig(ϕ) = f − g + 1. In this case the entire
free resolution of M is given by Eagon-Northcott complex; in particular, the next
map in the resolution of M is η :

∧g+1
F → F , where every entry of the matrix

representation of η is a g × g minor of ϕ. There are at least three ways to describe
the ring R/J which is resolved in the present paper. First of all, and this is the
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approach of Migliore and Peterson (first in [13], and later, with Nagel, in [12]), one
can take a regular section s of the sheaf, K̃, associated to K. In this approach,
the ideal J is the defining ideal of the degeneracy locus of s. Essentially, for each
vector v in the column space of η, the ideal J , which is generated by the entries
of v, represents a section of K̃. The rank of K, as an R−module, is f − g. If the
ideal J has height f − g, then J represents a regular section of K̃. The second
approach which yields the same object involves the language of order ideals. If n
is an element in the R−module N , then the order ideal of n in N is defined to
be {f(n) | f ∈ HomR(N,R)}. It is clear that the ideal J is the order ideal of the
element k in K which is represented by v. The Eisenbud-Evans Principal Ideal
Conjecture (see [2, Theorem 1] or [6, Theorem 2.7]) ensures that the height of J
is no more than f − g, provided the element k is not a minimal generator of KP

for some prime ideal P of R. Once again, we study the order ideal J , provided its
height is the largest possible. The third approach to the ideal J comes from the
theory of symmetric and Rees algebras. The cokernel of η∗ is the R−module of
projective dimension two which is resolved by

0 → G∗ ϕ∗
−→ F ∗ η∗

−→ ∧g+1
F ∗.

The ideal generated by the maximal minors of the last map in the above free res-
olution has grade given by the Eagon-Northcott bound for determinantal ideals.
Furthermore, any module of projective dimension two whose last map attains the
Eagon-Northcott bound, may be obtained in this manner. At any rate the sym-
metric algebra of coker η∗ is equal to R[T1, . . . , Tn]/J , where n = rank

∧g+1
F ∗

and J is generated by the entries of the product of [T1, . . . , Tn] with the matrix
representation of η∗. The ideal J is generated by the entries of a general element of
the row space of η∗; and consequently, it is equal to one of the ideals JR[T1, . . . , Tn],
since these ideals are generated by the entries of a general element of the column
space of η.

The quotient R/J is in general not Cohen-Macaulay; indeed, it has embedded
components. Migliore and Peterson observed that the correct object to study is
the unmixed part of J . (If the primary decomposition of J is ∩PP , where PP is
a P−primary ideal and the intersection is taken over all associated prime ideals
of J , then the unmixed part of J is Junm =

⋂
ht P=ht J

PP where this intersection is

taken over all associated prime ideals of J which have the same height as J .) In
the geometric setting, Junm defines the homogeneous coordinate ring of the highest
dimensional component of the degeneracy locus of the regular section s. In the
situation where R/J is a symmetric algebra, then the passage from J to Junm

kills the torsion submodule of the symmetric algebra, thereby producing the Rees
algebra of the projective dimension two module coker η∗. Migliore and Peterson
have shown, under geometric hypotheses, that R/Junm is a Cohen-Macaulay ring
and they have resolved this ring. Furthermore, if f − g is odd, then Junm is a
Gorenstein ideal and is not equal to J . On the other hand, if f − g is even, then
Junm = J . In the present paper, we produce the resolution M of R/J by free
R−modules in the case that f − g is even and (f − g − 2)! is a unit in R. The
resolution M is minimal whenever the data is local or homogeneous. Our resolution
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arises from a different point of view than the resolution of Migliore and Peterson and
it does not require the geometric hypotheses which are inherent in their approach.

We now give a brief description of M. Let K be the Koszul complex (
∧•

F ∗, b1).
It is clear that H0(K) = R/J and ϕ∗(G∗) ⊆ Z1(K). We adjoin g divided power
variables of degree two in order to kill the homology represented by ϕ∗(G∗). We
could write

∧•
F ∗<X1, . . . ,Xg; dXi = γ

[i]
1 > for the new object, where γ

[1]
1 , . . . γ

[g]
1

is a basis for G∗; however, instead we prefer to write the coordinate free version
(K̃, d) = (D•G∗ ⊗ ∧•

F ∗, d), with

d
(
γ

(i)
1 ⊗ αj

)
= γ

(i−1)
1 ⊗ ϕ∗(γ1) ∧ αj + γ

(i)
1 ⊗ b1(αj).

For each integer n, let K̃[n] represent the subcomplex
⊕

i+j≤n

DiG
∗⊗∧j

F ∗ of (K̃, d).

Let N = f−g
2 . The resolution M is obtained by glueing K̃[N ] to the shifted dual(

K̃[N−1]
)∗

[−(f − g)]. The only complicated part of M is the glue which joins the
two pieces.

Section 1 is a quick review of multilinear algebra. Section 2 contains the official
description of M, as well as various examples. We show that M is a complex
in section 3. In section 4, we establish the acyclicity of M and record various
consequences. The final section is a partial list of avenues for further study.

1. Preliminary results.

In this paper “ring” means commutative noetherian ring with one. The grade
of a proper ideal I in a ring R is the length of the longest regular sequence on R
in I. The ideal I of R is called perfect if the grade of I is equal to the projective
dimension of the R−module R/I. The inequality grade I ≤ pdR R/I always holds.

We begin with a few remarks about multilinear algebra. Let R be a commutative
noetherian ring, and F be a free R−module of finite rank. We make much use of
the exterior algebras

∧•
F and

∧•
F ∗. Each element of F ∗ is a graded derivation

on
∧•

F . In other words,

α1

(
a
[1]
1 ∧ . . . ∧ a

[s]
1

)
=

∑
j(−1)j+1α1(a

[j]
1 ) · a[1]

1 ∧ . . . ∧ â
[j]
1 ∧ . . . ∧ a

[s]
1 ∈ ∧s−1

F,

for all α1 ∈ F ∗ and a
[j]
1 ∈ F . This action gives rise to the

∧•
F ∗−module structure

on
∧•

F . In particular,

(α1 ∧ α′
1)(as) = α1

(
α′

1(as)
)

,

for α1, α
′
1 ∈ F ∗ and as ∈ ∧s

F . The
∧•

F−module structure on
∧•

F ∗ is obtained
in an analogous manner. In particular, if ai ∈

∧i
F and αj ∈ ∧j

F ∗, then

ai(αj) ∈
∧j−i

F ∗ and αj(ai) ∈
∧i−j

F.

One consequence of these two module structures is that as(αs) = αs(as) ∈ R for all
as in

∧s
F and αs ∈ ∧s

F ∗. The following well known formulas show more of the
interaction between the two module structures. See [4, section 1], [5, Appendix],
and [10, section 1].
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Proposition 1.1. Let F be a free module of rank f over a commutative noetherian
ring R and let ar ∈ ∧r

F , ap ∈ ∧p
F , and αq ∈ ∧q

F ∗.

(a) If r = 1, then [ar(αq)](ap) = ar ∧ [αq(ap)] + (−1)1+qαq(ar ∧ ap).
(b) If q = f , then [ar(αq)](ap) = (−1)(f−r)(f−p)[ap(αq)](ar).
(c) If p = f , then [ar(αq)](ap) = ar ∧ αq(ap).
(d) If ϕ : F → G is a homomorphism of free R−modules and γs+r ∈ ∧s+r

G∗,
then (

∧s
ϕ∗)

[(
(
∧r

ϕ)(ar)
)

(γs+r)
]

= ar

[(∧s+r
ϕ∗

)
(γs+r)

]
.

Note. The exponent which is given in (b) is correct. An incorrect value has ap-
peared elsewhere in the literature.

Remark 1.2. Let F be a free module over a commutative ring R. Let TrF represent
the R−module F ⊗ . . . ⊗ F︸ ︷︷ ︸

r

. (We do not make any other use of the tensor algebra

T•F .) The exterior algebra
∧•

F , the symmetric algebra S•F , and the divided
power algebra D•F each comes equipped with multiplication mult : A⊗A → A and
co-multiplication ∆: A → A ⊗ A. Co-multiplication is the algebra map which is
induced by the diagonal map F → F ⊕ F . Often, we will use ∆ to represent only
one graded piece of the co-multiplication map. In other words, if p + q = t, then
we let ∆:

∧t
F → ∧p

F ⊗ ∧q
F represent the composition

∧t
F

inclusion−−−−−→ ∧•
F

∆−→ ∧•
F ⊗ ∧•

F
projection−−−−−−→ ∧p

F ⊗ ∧q
F.

Example 1.3. The co-multiplication map ∆: S4F → S2F ⊗ F ⊗ F carries the
element a

[1]
1 · a[2]

1 · a[3]
1 · a[4]

1 of S4F to


+a
[1]
1 · a[2]

1 ⊗ a
[3]
1 ⊗ a

[4]
1 + a

[1]
1 · a[2]

1 ⊗ a
[4]
1 ⊗ a

[3]
1 + a

[1]
1 · a[3]

1 ⊗ a
[2]
1 ⊗ a

[4]
1

+a
[1]
1 · a[3]

1 ⊗ a
[4]
1 ⊗ a

[2]
1 + a

[1]
1 · a[4]

1 ⊗ a
[2]
1 ⊗ a

[3]
1 + a

[1]
1 · a[4]

1 ⊗ a
[3]
1 ⊗ a

[2]
1

+a
[2]
1 · a[3]

1 ⊗ a
[1]
1 ⊗ a

[4]
1 + a

[2]
1 · a[3]

1 ⊗ a
[4]
1 ⊗ a

[1]
1 + a

[2]
1 · a[4]

1 ⊗ a
[1]
1 ⊗ a

[3]
1

+a
[2]
1 · a[4]

1 ⊗ a
[3]
1 ⊗ a

[1]
1 + a

[3]
1 · a[4]

1 ⊗ a
[1]
1 ⊗ a

[2]
1 + a

[3]
1 · a[4]

1 ⊗ a
[2]
1 ⊗ a

[1]
1 .

Remark 1.4. For each integer i, there are canonical perfect pairings

∧i
F ∗ ⊗ ∧i

F → R and DiF
∗ ⊗ SiF → R.

For more details, see [1] or [11].

Definition 1.5. Let m = [m1, . . . ,m`] be a vector of non-negative integers. De-

fine the value of m to be |m| =
∑̀
h=1

h · mh. We think of m as the partition

1, . . . , 1︸ ︷︷ ︸
m1

, 2, . . . , 2︸ ︷︷ ︸
m2

, . . . , `, . . . , `︸ ︷︷ ︸
m`

of |m|. The number of pieces in the partition m is

r(m) =
∑̀
h=1

mh.
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Definition 1.6. For each vector m = [m1, . . . ,m`] of non-negative integers, define∧m
F to be ∧m1εεε1 F ⊗ ∧m2εεε2 F ⊗ . . . ⊗ ∧m`εεε` F,

where εεεh is the vector with 1 in position h and 0 everywhere else, and

∧mhεεεh F =


∧mh

(∧h
F

)
if h is odd, and

Smh

(∧h
F

)
if h is even.

Let ∆m = ∆• :
∧|m|

F → ∧m
F represent the composition∧|m|

F
∆−−−−→ ∧1m1 F ⊗ ∧2m2 F ⊗ . . . ⊗ ∧`m` Fy∆m1εεε1⊗∆m2εεε2⊗...⊗∆m`εεε`∧m1εεε1 F ⊗ ∧m2εεε2 F ⊗ . . . ⊗ ∧m`εεε` F,

where ∆ is the co-multiplication of Remark 1.2 and ∆mhεεεh
:

∧hmh F → ∧mhεεεh F
is the natural map. If m = [m1, . . . ,m`] is a vector of integers with mh < 0, for
some h, then we take

∧m
F to be the zero module and ∆m to be the zero map.

Example 1.7. The map ∆2εεε2 :
∧4

F → ∧2εεε2 F = S2(
∧2

F ) carries

a
[1]
1 ∧ a

[2]
1 ∧ a

[3]
1 ∧ a

[4]
1 to

a
[1]
1 ∧ a

[2]
1 ⊗ a

[3]
1 ∧ a

[4]
1 − a

[1]
1 ∧ a

[3]
1 ⊗ a

[2]
1 ∧ a

[4]
1 + a

[1]
1 ∧ a

[4]
1 ⊗ a

[2]
1 ∧ a

[3]
1 .

The map ∆2εεε3 :
∧6

F → ∧2εεε3 F =
∧2(

∧3
F ) carries

a
[1]
1 ∧ a

[2]
1 ∧ a

[3]
1 ∧ a

[4]
1 ∧ a

[5]
1 ∧ a

[6]
1 to

(a[1]
1 ∧ a

[2]
1 ∧ a

[3]
1 ) ∧ (a[4]

1 ∧ a
[5]
1 ∧ a

[6]
1 ) − (a[1]

1 ∧ a
[2]
1 ∧ a

[4]
1 ) ∧ (a[3]

1 ∧ a
[5]
1 ∧ a

[6]
1 )

+(a[1]
1 ∧ a

[2]
1 ∧ a

[5]
1 ) ∧ (a[3]

1 ∧ a
[4]
1 ∧ a

[6]
1 ) − (a[1]

1 ∧ a
[2]
1 ∧ a

[6]
1 ) ∧ (a[3]

1 ∧ a
[4]
1 ∧ a

[5]
1 )

+(a[1]
1 ∧ a

[3]
1 ∧ a

[4]
1 ) ∧ (a[2]

1 ∧ a
[5]
1 ∧ a

[6]
1 ) − (a[1]

1 ∧ a
[3]
1 ∧ a

[5]
1 ) ∧ (a[2]

1 ∧ a
[4]
1 ∧ a

[6]
1 )

+(a[1]
1 ∧ a

[3]
1 ∧ a

[6]
1 ) ∧ (a[2]

1 ∧ a
[4]
1 ∧ a

[5]
1 ) + (a[1]

1 ∧ a
[4]
1 ∧ a

[5]
1 ) ∧ (a[2]

1 ∧ a
[3]
1 ∧ a

[6]
1 )

−(a[1]
1 ∧ a

[4]
1 ∧ a

[6]
1 ) ∧ (a[2]

1 ∧ a
[3]
1 ∧ a

[5]
1 ) + (a[1]

1 ∧ a
[5]
1 ∧ a

[6]
1 ) ∧ (a[2]

1 ∧ a
[3]
1 ∧ a

[4]
1 ).

Some of the interplay between the co-multiplication map ∆ and the map ∆m of
Definition 1.6 is captured in the following three results.

Observation 1.8. If m = mkεεεk, then the diagram∧kmk F
∆m−−−−→ ∧m

F

∆

y mk

y∧k(mk−1)
F ⊗ ∧k

F
∆m−εεεk

⊗1−−−−−−→ ∧m−εεεk F ⊗ ∧k
F

mult−−−−→ ∧m
F
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commutes, where the map labled mk is multiplication by the integer mk and the
map labled mult is multiplication in the exterior algebra

∧•(
∧k

F ) (if k is odd) or
multiplication in the symmetric algebra S•(

∧k
F ) (if k is even).

Proof. This result holds because the composition

Amk

∆−→ Amk−1 ⊗ A1
mult−−−→ Amk

is multiplication by mk for A = S•G or A =
∧•

G, where G is any free R−module.
�
Observation 1.9. If m =

∑
mhεεεh, then the composition

∧|m|
F

∆m−−→ ∧m
F

mult−−−→ ∧|m|
F

is multiplication by
|m|!∏

1≤h

mh! · ∏
1≤h

(h!)mh
.

Proof. The maps∧|m|
F

∆−→ ∧1·m1 F ⊗ . . . ⊗ ∧`·m` F
mult−−−→ ∧|m|

F and∧h·mh F
∆•−−→ ∧mhεεεh F

mult−−−→ ∧h·mh F

are multiplication by

|m|!
(1 · m1)!(2 · m2)! · · · (` · m`)!

and
(h · mh)!

(h!)mhmh!
,

respectively. �
Observation 1.10. Fix a1 ∈ F , aj ∈ ∧j

F , and a vector m = [m1, . . . ,m`] of
non-negative integers, with |m| = j + 1. For each positive integer h, let `̀̀(h) and
u(h) be the lower part of m and the upper part of m, respectively, with respect to
h; that is,

`̀̀(h) =
∑
k≤h

mkεεεk and u(h) =
∑
h≤k

mkεεεk.

For each h, let
∑
i

a
[h,i]
− ⊗ a[h,i] ⊗ a

[h,i]
+ be the image of aj under the composition

∧j
F

∆−−−−→ ∧|̀`̀(h−1)|
F ⊗ ∧h−1

F ⊗ ∧|u(h)−εεεh| F

∆•⊗1⊗∆•

y∧`̀̀(h−1)
F ⊗ ∧h−1

F ⊗ ∧u(h)−εεεh F,

where a
[h,i]
− ∈ ∧`̀̀(h−1)

F , a[h,i] ∈ ∧h−1
F , and a

[h,i]
+ ∈ ∧u(h)−εεεh F . For each h, let

µh :
∧`̀̀(h−1)

F ⊗ ∧h
F ⊗ ∧u(h)−εεεh F → ∧m

F be
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∧`̀̀(h−1) F ⊗ ∧h F ⊗ ∧(mh−1)εεεh F ⊗ ∧u(h+1) F
1⊗mult⊗1−−−−−−−→ ∧`̀̀(h−1) F ⊗ ∧mhεεεh F ⊗ ∧u(h+1) F,

where the multiplcation
∧h

F ⊗ ∧(mh−1)εεεh F → ∧mhεεεh F takes place in S•(
∧h

F )
or

∧•(
∧h

F ), depending on the parity of h. Then

∆m(a1 ∧ aj) =
∑
h,i

(−1)|̀`̀(h−1)|µh

(
a
[h,i]
− ⊗ a1 ∧ a[h,i] ⊗ a

[h,i]
+

)
.

Proof. The statement merely says that if a[1], . . . , a[j+1] are each in F , then every
term of ∆m(a[1] ∧ . . . ∧ a[j+1]) may be manipulated in order to have a[1] appear in
the first position of

∧mhεεεh F for some h. �
Convention 1.11. If S is a statement, then we define

χ(S) =
{

1 if S is true,
0 if S is false.

For example, χ(i = j) has exactly the same meaning as the Kronecker delta δi j .

Convention 1.12. The empty sum is zero. The empty product is one. For each
positive integer r, Sr is the set of permutations on {1, . . . , r}. The set S0 consists
of the identity permutation.

2. The definition of M.

The following notation and assumptions are in effect everywhere.

Data 2.1. Let R be a commutative noetherian ring and ϕ : F → G be a homo-
morphism of free R−modules where rankF = f and rankG = g. Fix generators
ωF , ωF∗ , ωG, and ωG∗ for

∧f
F ,

∧f
F ∗,

∧g
G and

∧g
G∗, respectively, with the

property that ωF (ωF∗) = 1 and ωG(ωG∗) = 1. Let

bg+1 ∈ ∧g+1
F, βg = (

∧g
ϕ∗)(ωG∗) ∈ ∧g

F ∗, and b1 = βg(bg+1) ∈ F.

Assume always that f − g is even and greater than zero. Let N = f−g
2 . The

R−ideal J = J(bg+1, ϕ) is the image of b1 : F ∗ → R.

Remark. Observe that J is the prototype for the ideals studied by Migliore and
Peterson. Indeed, we saw in the introduction that such an ideal is generated by
the elements of some vector v in the column space of the map η. In the notation
of Data 2.1, η :

∧g+1
F → F is the map which sends the arbitrary element bg+1 of∧g+1

F to b1 in F . Thus, b1 is a general element in the column space of η and J is
generated by the entries of b1.

Convention 2.2. We use the following conventions:

ai ∈
∧i

F, αi ∈
∧i

F ∗, ci ∈
∧i

G, γi ∈
∧i

G∗, and Ci ∈ SiG

are arbitrary elements. In particular, elements a and α are always in the exterior
algebras

∧•
F and

∧•
F ∗, respectively. Furthermore, the subscript of the element

tells the degree of the element. When we need several elements from a particular
module we identify them by using superscripts inside square brackets. For example,
a
[1]
i , . . . , a

[k]
i represent k elements from

∧i
F .

Most of M is easy to describe. The one difficult part is the map Ψp,q,i,j , which
may be found in Definition 2.7. We prove that M is a complex in Lemma 3.2; the
acyclicity of M is established in Theorem 4.3.
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Definition 2.3. Adopt Data 2.1. The modules of M = M(bg+1, ϕ) are given by

0 → Mf−g
df−g−−−→ Mf−g−1

df−g−1−−−−−→ . . .
d2−→ M1

d1−→ M0,

with
Mt =

∑
2i+j=t
i+j≤N

DiG
∗ ⊗ ∧j

F ∗ ⊕ ∑
2p+q=f−g−t

p+q≤N−1

SpG ⊗ ∧q
F.

The differential is given by

d
(
γ

(i)
1 ⊗ αj

)
= γ

(i−1)
1 ⊗ ϕ∗(γ1) ∧ αj + γ

(i)
1 ⊗ b1(αj),

for γ
(i)
1 ⊗ αj ∈ DiG

∗ ⊗ ∧j
F ∗, and

d
(
Cp ⊗ aq

)
=


Cp ⊗ b1 ∧ aq

+
q∑

k=1

(−1)k+1ϕ(a[k]
1 ) · Cp ⊗ a

[1]
1 ∧ . . . ∧ â

[k]
1 ∧ . . . ∧ a

[q]
1

+
∑

2p+2i+j+q=2N−1
i+j≤N

Ψp,q,i,j(Cp ⊗ aq ⊗ ⊗ ) ∈ DiG
∗ ⊗ ∧j

F ∗,

for Cp ⊗ aq = Cp ⊗ a
[1]
1 ∧ . . . ∧ a

[q]
1 ∈ SpG ⊗ ∧q

F .

Remark. The map Ψp,q,i,j(Cp ⊗ aq ⊗ ⊗ ) of Definition 2.7 is a homomorphism
from SiG ⊗ ∧j

F to R; hence, it is an element of DiG
∗ ⊗ ∧j

F ∗.
The map Ψp,q,i,j is based on two other maps; namely, Φ, which is found in

Definition 2.5, and ∆m, which is given in Definition 1.6.

Definition 2.4. Adopt Data 2.1. For each intger n, define

τ1,n : G ⊗ ∧n
F → ∧n+2

F and τn : Sn(G) → ∧2n
F

by
τ1,n(c1 ⊗ an) =

[
(
∧g−1

ϕ∗)(c1[ωG∗ ])
]
(bg+1 ∧ an),

and τn is the composition

SnG
Sn(τ1,0)−−−−−→ Sn(

∧2
F ) mult−−−→ ∧2n

F.

When the domain of τ1,n or τn is clear from context, we simply write τ .

Definition 2.5. Adopt Data 2.1. Let r, n1, . . . , nr, and p be non-negative integers

which satisfy 2p +
r∑

k=1

nk = 2N − 1. Define

Φp;n1,...,nr
: SpG ⊗ ∧n1 F ⊗ . . . ⊗ ∧nr F → R

to be the composition

SpG ⊗ ∧n1 F ⊗ . . . ⊗ ∧nr F
∆⊗1−−−→ Sp+1−rG ⊗ Tr−1G ⊗ ∧n1 F ⊗ . . . ⊗ ∧nr F → R,

where the last map is given by Cp+1−r ⊗ c
[1]
1 ⊗ . . .⊗ c

[r−1]
1 ⊗ an1 ⊗ . . .⊗ anr

is sent
to (

τ(Cp+1−r) ∧ τ(c[1]
1 ⊗ an1) ∧ . . . ∧ τ(c[r−1]

1 ⊗ anr−1) ∧ anr
∧ bg+1

)
(ωF∗).

Remark 2.6. When the domain of Φp;n1,...,nr
is clear from context, we simply write

Φ. If p ≤ r − 2 or r = 0, then Φp;n1,...,nr
is the zero map. We have Φ0;n1(1 ⊗ an1)

is equal to [an1 ∧ bg+1](ωF∗).
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Definition 2.7. Fix p, q, i, and j with 2p + 2i + j + q = 2N − 1. The map

Ψp,q,i,j : SpG ⊗ ∧q
F ⊗ SiG ⊗ ∧j

F → R

is given by
Ψp,q,i,j(Cp ⊗ aq ⊗ Ci ⊗ aj)

is equal to

∑
|m|=q+j

∏
1≤h

(h!)mh(−1)N−i
( p + i

N − i − j

) (2N − 2)!

(2N − p − i − 1)!
Φ(Cp · Ci ⊗ ∆m(aq ∧ aj)).

Remarks 2.8. (a) The sum
∑

|m|=q+j

is taken over all vectors m, such that m is a

partition of q + j, in the sense of Definition 1.5. The contribution of the partition
m is zero, unless r(m) ≤ p + i + 1.

(b) At first glance, it is not completely clear that Φ(Cp · Ci ⊗ ∆m( )) is a well
defined function, because some work is required in order to show that

Φ(Cp ⊗an1 ⊗ . . .⊗anr−2 ⊗anr ⊗anr−1) = (−1)nrnr−1Φ(Cp ⊗an1 ⊗ . . .⊗anr−2 ⊗anr−1 ⊗anr ).

Nonetheless, the equation does hold; see Lemma 3.1, and the function is well de-
fined.

(c) The coefficient in Ψp,q,i,j is an integer, whenever this map appears in the
complex M of Definition 2.3. Indeed, the only concern occurs when p + i = 0.
However, in this case, q = N − 1, j = N , m = εεε2N−1, and the coefficient∏

1≤h

(h!)mh(−1)N−i

(
p + i

N − i − j

)
(2N − 2)!

(2N − p − i − 1)!

is equal to (2N − 2)!(−1)N .

(d) Assume that the data of 2.1 is homogeneous. In particular, R =
⊕

0≤i Ri is
a graded algebra over the ring R0, ϕ is represented by a homogeneous matrix, all
of whose entries are in Raaa, and every component of bg+1, with respect to any basis
for F , is an element of Rbbb. Then M is a homogeneous complex with DiG

∗ ⊗∧j
F ∗

equal to

R
(
−

[
[(g + 1)i + gj]aaa + (i + j)bbb

])(g+i−1
i )(f

j)

and SpG ⊗ ∧q
F equal to

R
(
−

[
[g(f − g − 1 − p − q) − p]aaa + (f − g − p − q)bbb

])(g+p−1
p )(f

q)
.

In particular,

Mf−g = R(−N(gaaa + aaa + bbb))(
g+N−1

N ) ⊕ R
(
−

[
[g(f − g − 1)]aaa + (f − g)bbb

])
.
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Example 2.9. When f − g = 2, then the complex M of Definition 2.3 is

0 →
G∗

⊕
R

d2−→ F ∗ d1−→ R,

where

d1(α1) = b1(α1), d2(γ1) = ϕ∗(γ1), and d2(1) = −bg+1(ωF∗).

The above complex is the Hilbert-Burch complex which is associated to the map
d2; consequenly, this complex is acyclic whenever 2 ≤ gradeJ . In the notation of
Remark 2.8 (d), with aaa = bbb = 1, M is

0 → R(−[g + 2])g+1 → R(−[g + 1])g+2 → R.

Example 2.10. When f − g = 4, then the complex M of Definition 2.3 is

0 →
D2G

∗

⊕
R

d4−→
G∗ ⊗ F ∗

⊕
F

d3−→

∧2
F ∗

⊕
G∗

⊕
G

d2−→ F ∗ d1−→ R,

where

d1(α1) = b1(α1), d2

α2

0
0

 = b1(α2) d2

 0
γ1

0

 = ϕ∗(γ1),

d2

 0
0
c1

 = P (c1 ⊗ ), d3

[
γ1 ⊗ α1

0

]
=

ϕ∗(γ1) ∧ α1

b1(α1) · γ1

0

 ,

d3

[
0
a1

]
=

 2[a1 ∧ bg+1](ωF∗)
−P ( ⊗ a1)

ϕ(a1)

 ,

d4

[
γ

(2)
1

0

]
=

[
γ

(1)
1 ⊗ ϕ∗(γ1)

0

]
, and d4

[
0
1

]
=

[−P ( ⊗ )
b1

]
,

where P : G ⊗ F → R is given by

P (c1 ⊗ a1) =
[(

(
∧g−1

ϕ∗)(c1[ωG∗ ])
)

(bg+1) ∧ a1 ∧ bg+1

]
(ωF∗).

In the notation of Remark 2.8 (d), with aaa = bbb = 1, M is

0 →
R(−[2g + 4])

(g+1
2

)
⊕

R(−[3g + 4])

→
R(−[2g + 3])g(g+4)

⊕
R(−[2g + 3])g+4

→

R(−[2g + 2])
(g+4

2

)
⊕

R(−[g + 2])g

⊕
R(−[2g + 2])g

→ R(−[g + 1])g+4 → R.
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Example 2.11. When f − g = 6, then the complex M of Definition 2.3 is

0 →
D3G∗
⊕
R

d6−→
D2G∗ ⊗ F ∗

⊕
F

d5−→

G∗ ⊗ ∧2 F ∗
⊕

D2G∗
⊕∧2 F
⊕
G

d4−→

∧3 F ∗
⊕

G∗ ⊗ F ∗
⊕

G ⊗ F

d3−→

∧2 F ∗
⊕
G∗
⊕

S2G

d2−→ F ∗ d1−→ R,

where

d1(α1) = b1(α1), d2

α2

0
0

 = b1(α2), d2

 0
γ1

0

 = ϕ∗(γ1),

d2

 0
0
C2

 = P1(C2 ⊗ ), d3

α3

0
0

 =

 b1(α3)
0
0

 ,

d3

 0
γ1 ⊗ α1

0

 =

ϕ∗(γ1) ∧ α1

b1(α1) · γ1

0

 , d3

 0
0

c1 ⊗ a1

 =

 P2(c1 ⊗ a1 ∧ )
−P1(c1 · ⊗ a1)

ϕ(a1) · c1

 ,

d4


γ1 ⊗ α2

0
0
0

 =

ϕ∗(γ1) ∧ α2

γ1 ⊗ b1(α2)
0

 , d4


0

γ
(2)
1

0
0

 =

 0
γ1 ⊗ ϕ∗(γ1)

0

 ,

d4


0

0

a1∧a′
1

0

=


−24Φ0;5(1 ⊗ a1 ∧ a′

1 ∧ )
−P2( ⊗ a1 ∧ a′

1 ∧ )
ϕ(a1) ⊗ a′

1 − ϕ(a′
1) ⊗ a1

, d4


0
0
0
c1

=


P2(c1 ⊗ )

−2P1(c1 · ⊗ )
c1 ⊗ b1

,

d5

[
γ

(2)
1 ⊗ α1

0

]
=


γ1 ⊗ ϕ∗(γ1) ∧ α1

γ
(2)
1 ⊗ b1(α1)

0
0

 , d5

[
0
a1

]
=


−P2( ⊗ a1 ∧ )

2P1( ⊗ a1)
b1 ∧ a1

ϕ(a1)

 ,

d6

[
γ

(3)
1

0

]
=

[
γ

(2)
1 ⊗ ϕ∗(γ1)

0

]
, and d6

[
0
1

]
=

[
P1( ⊗ )

b1

]
,

where P1 : S2G ⊗ ∧1
F → R and P2 : S1G ⊗ ∧3

F → R are given by

P1(C2 ⊗ a1) = −4Φ2;1(C2 ⊗ a1), and

P2(C1 ⊗ a3) = −6Φ1;3(C1 ⊗ a3) − 2Φ1;1,2

(
C1 ⊗ ∆εεε1+εεε2(a3)

)
.
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In the notation of Remark 2.8 (d), with aaa = bbb = 1, M is

0 →
R(−[3g + 6])

(g+2
3

)
⊕

R(−[5g + 6])

→
R(−[3g + 5])

(g+1
2

)
(g+6)

⊕
R(−[4g + 5])g+6

→

R(−[3g + 4])g
(g+6

2

)
⊕

R(−[2g + 4])
(g+1

2

)
⊕

R(−[3g + 4])
(g+6

2

)
⊕

R(−[4g + 4])g

→

R(−[3g + 3])
(g+6

3

)
⊕

R(−[2g + 3])g(g+6)

⊕
R(−[3g + 3])g(g+6)

→

R(−[2g + 2])
(g+6

2

)
⊕

R(−[g + 2])g

⊕
R(−[3g + 2])

(g+1
2

)
→ R(−[g + 1])g+6 d1−→ R.

Proposition 2.12. If g = 1, then the complex M of Definition 2.3 takes the fol-
lowing form. Let R be a commutative notherian ring and ϕ : F → R be a homo-
morphism of R−modules where F is free of rankF = f = 2N + 1. Fix a generator
ωF∗ for

∧f
F ∗. Let b2 ∈ ∧2

F , b1 = ϕ(b2) ∈ F , and J = I1(b1). The complex M is

0 → Mf−1
df−1−−−→ Mf−2

df−2−−−→ . . .
d2−→ M1

d1−→ M0,

with
Mt =

∑
2i+j=t
i+j≤N

0≤i

1(i) ⊗ ∧j
F ∗ ⊕ ∑

2p+q=f−1−t
p+q≤N−1

0≤p

1p ⊗ ∧q
F.

The differential is given by

d
(
1(i) ⊗ αj

)
= 1(i−1) ⊗ ϕ ∧ αj + 1(i) ⊗ b1(αj), and

d(1p ⊗ aq) =


1p ⊗ b1 ∧ aq + 1p+1 ⊗ ϕ(aq)

+
N∑

i=0

(−1)N−i
(

p+i
N−1−p−q

)
(2N − 2)!1(i) ⊗

[
b
(p+i+1)
2 ∧ aq

]
(ωF∗).

Furthermore, if f −1 ≤ gradeJ and (2N −2)! is a unit in R, then M is a resolution
of R/J.

Proof. We first show that we have correctly described the complex M of Definition
2.3, when g = 1. Fix p, q, i, and j with 2p + 2i + j + q = 2N − 1. We must show
that

(2.13)
Ψp,q,i,j(1p ⊗ aq ⊗ ⊗ )

= (−1)N−i
(

p+i
N−1−p−q

)
(2N − 2)!1(i) ⊗ [b(p+i+1)

2 ∧ aq](ωF∗)

in DiG
∗ ⊗ ∧j

F ∗ = 1(i) ⊗ ∧j
F ∗. Observe that

Φ(1p ⊗ an1 ⊗ . . . ⊗ anr
) =

(
p

r − 1

)
(r − 1)![bp+1

2 ∧
r∧

k=1

ank
](ωF∗),
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whenever 1 ≤ r ≤ p+1 and 2p+
r∑

k=1

nk = 2N−1. Apply the most recent observation,

together with Observation 1.9, in order to see that Ψp,q,i,j(1p⊗aq⊗1i⊗aj) is equal
to ∑

|m|=q+j

(−1)N−i

(
p + i

N − i − j

)
(2N − 2)!

(2N − p − i − 1)!
|m|!∏

1≤h

mh!

(
p + i

r(m) − 1

)
(r(m) − 1)!

times
[
bp+i+1
2 ∧ aq ∧ aj

]
(ωF∗). Recall that bn

2 = n!b(n)
2 . To complete the proof of

(2.13), it suffices to show that

∑
|m|=q+j

(p + i + 1)!
(2N − p − i − 1)!

|m|!∏
1≤h

mh!

(
p + i

r(m) − 1

)
(r(m) − 1)! = 1.

The left side of the above line is

(q + j)!(p + i)!
(2N − p − i − 1)!

∑
|m|=2N−1−2p−2i

r(m)≤p+i+1

(p + i + 1)!
(p + i + 1 − r(m))! · ∏

1≤h

mh!
,

and Lemma 2.14 shows that this is equal to 1.
Now we turn to the issue of acyclicity. Assume that f − 1 ≤ gradeJ . The

resolution of R/J from [9] has been recorded as M′ in Proposition 2.15. Consider
θ : M → M′ given by{

θ(1(i) ⊗ αj) = h(i)αj

θ(1p ⊗ aq) = (−1)N+1(2N − 2)!λ(N−1−p−q)aq.

It is easy to see that θ is a homomorphism of complexes and that θ is an isomorphism
whenever (f − 3)! is a unit. �
Lemma 2.14. If P and M are non-negative integers, then

∑
m

(P + 1)!
(P + 1 − r(m))!

∏
1≤h

mh!
=

(
M + P

P

)
,

where the sum is taken over all partitions m =
∑

mhεεεh with r(m) ≤ P + 1 and
|m| = M .

Proof. Compute the coefficient of XM in

(1 + X + X2 + X3 + . . . )P+1 =
1

(1 − X)P+1
=

∞∑
j=0

(
P + j

j

)
Xj

two different ways. �



14 ANDREW R. KUSTIN

Proposition 2.15. Let R be a commutative noetherian ring, N an integer, with
2 ≤ N , F be a free R−module of rank f = 2N + 1, b2 ∈ ∧2

F , and ϕ ∈ F ∗. Fix an
orientation element ωF∗ ∈ ∧f

F ∗. Let b1 be the element ϕ(b2) of F . Define

(M′, d′) : 0 → M′
f−1

d′
f−1−−−→ M′

f−2

d′
f−2−−−→ . . .

d′
0−→ M′

0

by
M′

t =
∑

2i+j=t
i+j≤N

h(i) ∧j
F ∗ ⊕ ∑

2p+q=t−2
p+q≤N−1

λ(p) ∧q
F,

d′(h(i)αj) = h(i−1)ϕ ∧ αj + h(i)b1(αj), and

d′(λ(p)aq) =

{
λ(p−1)b1 ∧ aq + λ(p)ϕ(aq)

+
∑
i∈Z

(−1)i+1
(
N+i−q−p−1

p

)
h(i)

(
b
(N+i−q−p)
2 ∧ aq

)
(ωF∗).

Then (M′, d′) is a complex; furthermore, if f −1 ≤ gradeJ, then (M′, d′) is acyclic.

Proof. This result is a combination Propositions 2.6 and 2.16 from [9]. In order to
make the notation of [9] compatible with the present notation, we have replaced ξ
by ωF∗ , ϕ by b2, Y by ϕ, and g by b1. (One may think of h(i) as the ith divided
power of degree two variable or merely as a place holder. One must think of λ(p) as
a place holder. At any rate, h(i) and λ(p) are zero unless the parenthetical exponent
is a non-negative integer.) �
Proposition 2.16. If g = 0, then the complex M of Definition 2.3 is isomorphic
to (K, δ), where Ki =

∧i
F ∗ for all i, and δi : Ki → Ki−1 is given by

δi(αi) =
{

b1(αi) if i 6= N + 1
(f − 2)!b1(αi) if i 6= N + 1.

Furthermore, if f ≤ gradeJ and (f − 2)! is a unit in R, then M is a resolution of
R/J.

Proof. It is easy to see that

Mt =

{ ∧t
F ∗ if t ≤ N , and∧f−t

F if N + 1 ≤ t.

The only complicated map in M is the map MN+1 → MN , which is given by

aN−1 7→ Ψ0,N−1,0,N (1 ⊗ aN−1 ⊗ 1 ⊗ ).

Remark 2.6 shows that the contribution to Ψ0,N−1,0,N of the partition |m| of 2N−1
is zero for all m except m = εεε2N−1. It follows that

Ψ0,N−1,0,N (1 ⊗ aN−1 ⊗ 1 ⊗ ) = ±(2N − 2)! b1(aN−1[ωF∗ ]).

The map
∧f−t

F → ∧t
F ∗, which is given by af−t 7→ af−t(ωF∗), provides an

isomorphism from M to K. If (f − 2)! is a unit in R, then K is isomorphic to the
Koszul complex. �
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3. M is a complex.

Data 2.1 is in effect throughout the entire section. In this section we prove the
following two results.

Lemma 3.1. Fix Cp ∈ SpG and ai ∈
∧i

F . The functions

Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr
) and Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr

∧ βg(ai))

are both graded-symmetric in the terms an1 , . . . , anr
.

Lemma 3.2. The maps and modules of Definition 2.3 form a complex.

We derive Lemmas 3.1 and 3.2 from Lemmas 3.3 and 3.4; and then we spend
the rest of the section establishing Lemmas 3.3 and 3.4.

Lemma 3.3. Let r, n1, . . . , nr, and p be non-negative integers and let J equal

2p + 1 +
r∑

k=1

nk. Consider the two maps

Q1 and Q2 : SpG ⊗ ∧n1 F ⊗ . . . ⊗ ∧nr F → ∧J
F,

which are given by

SpG ⊗ ∧n1 F ⊗ . . . ⊗ ∧nr F
∆⊗1−−−→ Sp−rG ⊗ TrG ⊗ ∧n1 F ⊗ . . . ⊗ ∧nr F

q1−→ ∧J
F

and

SpG⊗∧n1 F ⊗ . . .⊗∧nr F
∆⊗1−−−→ Sp+1−rG⊗Tr−1G⊗∧n1 F ⊗ . . .⊗∧nr F

q2−→ ∧J
F,

respectively, where q1

(
Cp−r ⊗ c

[1]
1 ⊗ . . . ⊗ c

[r]
1 ⊗ an1 ⊗ . . . ⊗ anr

)
is equal to

b1 ∧ τ(Cp−r) ∧ τ(c[1]
1 ⊗ an1) ∧ . . . ∧ τ(c[r]

1 ⊗ anr
)

and q2

(
Cp+1−r ⊗ c

[1]
1 ⊗ . . . ⊗ c

[r−1]
1 ⊗ an1 ⊗ . . . ⊗ anr

)
is equal to

r∑
`=1

τ(Cp+1−r) ∧
`−1∧
k=1

(−1)nkτ(c[k]
1 ⊗ ank

) ∧ βg(bg+1 ∧ an`
) ∧

r−1∧
k=`

τ(c[k]
1 ⊗ ank+1).

If J = 2N , then βg [(Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr
)) (ωF )] is equal to

(−1)g+1[Q1(Cp ⊗ an1 ⊗ . . . ⊗ anr
) + Q2(Cp ⊗ an1 ⊗ . . . ⊗ anr

)].
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Lemma 3.4. If 2p + 2i + q + j = 2N − 2, aq = a
[1]
1 ∧ . . . ∧ a

[q]
1 , and aj is equal to

a
[q+1]
1 ∧ . . . ∧ a

[q+j]
1 , then

0 =



Ψp,q+1,i,j(Cp ⊗ b1 ∧ aq ⊗ Ci ⊗ aj)

+Ψp,q,i,j+1(Cp ⊗ aq ⊗ Ci ⊗ aj ∧ b1)

+
q∑

k=1

(−1)k+1Ψp+1,q−1,i,j(ϕ(a
[k]
1 ) · Cp ⊗ a

[1]
1 ∧ . . . ∧ â

[k]
1 ∧ . . . ∧ a

[q]
1 ⊗ Ci ⊗ aj)

+
q+j∑

k=q+1
(−1)kΨp,q,i+1,j−1(Cp ⊗ aq ⊗ Ci · ϕ(a

[k]
1 ) ⊗ a

[q+1]
1 ∧ . . . ∧ â

[k]
1 ∧ . . . ∧ a

[q+j]
1 ).

Proof of Lemma 3.1. Definition 2.5 shows that both maps are graded-symmetric
in the terms an1 , . . . , anr−1 . Let α0 be

Φ(Cp ⊗ an1 ⊗ . . .⊗ anr−2 ⊗ anr ⊗ anr−1 )− (−1)nrnr−1Φ(Cp ⊗ an1 ⊗ . . .⊗ anr−2 ⊗ anr−1 ⊗ anr ).

It suffices to show that α0 = 0 and that

Φ
(
Cp ⊗ an1 ⊗ . . . ⊗ anr−2 ⊗ anr

⊗ anr−1 ∧ βg(ai)
)

= (−1)nr−1nrΦ
(
Cp ⊗ an1 ⊗ . . . ⊗ anr−2 ⊗ anr−1 ⊗ anr

∧ βg(ai)
)
.

The second equation follows from the first equation together with the fact that

(3.5) τ(c1 ⊗ an ∧ βg(ai)) = τ(c1 ⊗ an) ∧ βg(ai).

If we prove that α0 = 0 whenever R is a polynomial ring of the form Z[X1, . . . ,Xm],
then we may apply a ring homomorphism in order to conclude that α0 = 0 over
an arbitrary commutative ring. Consequently, we assume that R is a domain
and βg is a non-zero element of

∧g
F ∗. Proposition 1.1 (b) or (c) shows that

[βg(α0(ωF ))](ωF∗) = α0 · βg; therefore, it suffices to show that βg(α0(ωF )) = 0.
This statement is established by Lemma 3.3. �
Proof of Lemma 3.2. The only interesting part of this calculation is the compo-
sition

SpG ⊗ ∧q
F

incl−−→ Mt
d−→ Mt−1

d−→ Mt−2
proj−−→ DiG

∗ ⊗ ∧j
F ∗,

where p+q ≤ N−1, i+j ≤ N , and 2i+j−2 = 2N−2p−q. Let Cp⊗aq ∈ SpG⊗∧q
F

and Ci ⊗ a′
j ∈ SiG ⊗ ∧j

F . Write aq = a
[1]
1 ∧ . . . ∧ a

[q]
1 and a′

j = a
′[1]
1 ∧ . . . ∧ a

′[j]
1 .

Observe that when the element

(proj ◦d ◦ d ◦ incl)(Cp ⊗ aq)

of DiG
∗ ⊗ ∧j

F ∗ is applied to Ci ⊗ a′
j , the result is

Ψp,q+1,i,j(Cp ⊗ b1 ∧ aq ⊗ Ci ⊗ a′
j)

+
q∑

k=1
(−1)k+1Ψp+1,q−1,i,j(ϕ(a

[k]
1 ) · Cp ⊗ a

[1]
1 ∧ . . . ∧ â

[k]
1 ∧ . . . ∧ a

[q]
1 ⊗ Ci ⊗ aj)

+
j∑

k=1

(−1)k+jΨp,q,i+1,j−1(Cp ⊗ aq ⊗ Ci · ϕ(a
′[k]
1 ) ⊗ a

′[1]
1 ∧ . . . ∧ â

′[k]
1 ∧ . . . ∧ a

′[j]
1 )

+Ψp,q,i,j+1(Cp ⊗ aq ⊗ Ci ⊗ a′
j ∧ b1).



THE MIGLIORE-PETERSON RINGS 17

It is clear that the top two lines are correct. The third line is the image of
Ψp,q,i+1,j−1(Cp ⊗ aq ⊗ ⊗ ) ∈ Di+1G

∗ ⊗ ∧j−1
F ∗ under the composition

γ
(i+1)
1 ⊗ αj−1 7→ γ

(i)
1 ⊗ ϕ∗(γ1) ∧ αj−1 7→ γ

(i)
1 (Ci) · [ϕ∗(γ1) ∧ αj−1](a′

j) ∈ R.

The fourth line is the image of Ψp,q,i,j+1(Cp ⊗ aq ⊗ ⊗ ) ∈ DiG
∗ ⊗ ∧j+1

F ∗

under the composition

γ
(i)
1 ⊗ αj+1 7→ γ

(i)
1 ⊗ b1(αj+1) 7→ γ

(i)
1 (Ci) · [b1(αj+1)](a′

j) ∈ R.

Lemma 3.4 completes the proof. �
The next four results are used in the proof of Lemma 3.3.

Lemma 3.6. If αg−1 and α′
g−1 are in the image of

∧g−1
ϕ∗, then

(a) αg−1(αg−1(ai) ∧ aj) = (−1)(g+1)(i+1)αg−1(ai) ∧ αg−1(aj), and

(b) αg−1(α′
g−1(ai) ∧ aj) + α′

g−1(αg−1(ai) ∧ aj)
= (−1)(g+1)(i+1)[αg−1(ai) ∧ α′

g−1(aj) + α′
g−1(ai) ∧ αg−1(aj)],

for all ai ∈
∧i

F and aj ∈ ∧j
F .

Proof. Assertion (b) is obtained by applying (a) to αg−1 + α′
g−1. To prove (a), we

let γ
[1]
1 , . . . , γ

[g]
1 be a basis of G∗, and α

[i]
1 = ϕ∗(γ[i]

1 ). The general case quickly boils
down to the case αg−1 = αg−2∧α

[g−1]
1 +αg−2∧α

[g]
1 , where αg−2 = α

[1]
1 ∧ . . .∧α

[g−2]
1 .

In this case the assertion is obvious. �
Corollary 3.7. If αg−1 is in the image of

∧g−1
ϕ∗, then

βg(αg−1(ai) ∧ aj) = (−1)(g+1)(i+1)βg(ai) ∧ αg−1(aj) + (−1)giαg−1(ai) ∧ βg(aj),

for all ai ∈
∧i

F and aj ∈ ∧j
F .

Proof. Let αg−1 = (
∧g−1

ϕ∗)(c1[ωG∗ ]) for some c1 ∈ G. The proposed equation is
linear in c1; consequently, it suffices to establish the equation when c1 is part of a
basis for G. In this case, there exists α1 such that α1 ∧ αg−1 = βg. Apply Lemma
3.6 to complete the proof. �
Corollary 3.8. If α

[1]
g−1, . . . , α

[s]
g−1 are in the image of

∧g−1
ϕ∗, then

βg

(
α

[1]
g−1(bg+1) ∧ . . . ∧ α

[s]
g−1(bg+1) ∧ aj

)
is equal to

s∑̀
=1

b1 ∧ α
[1]
g−1(bg+1) ∧ . . . ∧ ̂

α
[`]
g−1(bg+1) ∧ . . . ∧ α

[s]
g−1(bg+1) ∧ α

[`]
g−1(aj)

+α
[1]
g−1(bg+1) ∧ . . . ∧ α

[s]
g−1(bg+1) ∧ βg(aj),

for all aj ∈ ∧j
F .

Proof. The result follows from repeated application of Corollary 3.7 together with
the observation that

b1 ∧ αg−1(α′
g−1(bg+1) ∧ aj) = b1 ∧ α′

g−1(bg+1) ∧ αg−1(aj)

for αg−1 and α′
g−1 in the image of

∧g−1
ϕ∗. This last observation holds because if

α1 is in the image of ϕ∗, then α1(α′
g−1(bg+1)) = r b1 for some r ∈ R. �
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Definition 3.9. Let t : G ⊗ ∧i
F → ∧i−g+1

F be given by

t(c1 ⊗ ai) =
[
(
∧g−1

ϕ∗)(c1[ωG∗ ])
]
(ai).

Remark. Notice that τ(c1 ⊗ ai) = t(c1 ⊗ bg+1 ∧ ai).

Lemma 3.10. Fix a positive integer r. If c
[k]
1 ∈ G, ank

∈ ∧nk F , and m` =
`−1∑
k=1

nk,

then

(a)
∑

σ∈Sr

t

(
c
[σ(1)]
1 ⊗

r∧
k=2

t(c[σ(k)]
1 ⊗ ank−1) ∧ anr

)
is equal to

(−1)(g+1)(mr+r+1)
∑

σ∈Sr

r∧
k=1

t(c[σ(k)]
1 ⊗ ank

), and

(b)
∑

σ∈Sr−1

βg

(
r−1∧
k=1

t(c[σ(k)]
1 ⊗ ank

) ∧ anr

)
is equal to

∑
σ∈Sr−1

r∑
`=1

(−1)(g+1)(mr+r+`)+m`

`−1∧
k=1

t(c[σ(k)]
1 ⊗ank

)∧βg(an`
)∧

r−1∧
k=`

t(c[σ(k)]
1 ⊗ank+1).

Proof. Both results are obvious for r = 1. (See Convention 1.12.) Lemma 3.6
establishes (a) when r = 2. The proof of (a) is completed by induction on r.
Corollary 3.7 shows that the left side of (b) is equal to L′ + L′′, where

L′ = (−1)(g+1)(n1+1)
∑

σ∈Sr−1

βg(an1) ∧ t

(
c
[σ(1)]
1 ⊗

r−1∧
k=2

t(c[σ(k)]
1 ⊗ ank

) ∧ anr

)
and

L′′ = (−1)gn1
∑

σ∈Sr−1

t(c[σ(1)]
1 ⊗ an1) ∧ βg

(
r−1∧
k=2

t(c[σ(k)]
1 ⊗ ank

) ∧ anr

)
.

Complete the proof by applying (a) to L′ and induction to L′′. �
Proof of Lemma 3.3. Fix Cp, an1 , . . . , anr

, with J = 2N . Let

Q0 = βg [(Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr
)) (ωF )] and Qi = Qi(Cp ⊗ an1 ⊗ . . . ⊗ anr

),

for i = 1, 2. If ∑
i

C
[i]
p+1−r ⊗ c

[i,1]
1 ⊗ . . . ⊗ c

[i,r−1]
1

is the image of Cp under ∆: SpG → Sp+1−rG ⊗ Tr−1G, then Definition 2.5 shows
that Q0 is equal to∑

i

βg

(
τ(C [i]

p+1−r) ∧ τ(c[i,1]
1 ⊗ an1) ∧ . . . ∧ τ(c[i,r−1]

1 ⊗ anr−1) ∧ anr
∧ bg+1

)
.
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Let
∑
h

C
[i;h]
p−r ⊗ c

[i;h]
1 be the image of C

[i]
p+1−r under ∆: Sp+1−rG → Sp−rG ⊗ S1G.

Apply Corollary 3.8 to see that Q0 = Q′
0 + Q′′

0 , where Q′
0 is equal to∑

i,h

b1 ∧ τ(C [i;h]
p−r ) ∧ t

(
c
[i;h]
1 ⊗ τ(c[i,1]

1 ⊗ an1) ∧ . . . ∧ τ(c[i,r−1]
1 ⊗ anr−1) ∧ anr

∧ bg+1

)
and Q′′

0 is equal to∑
i

τ(C [i]
p+1−r) ∧ βg

(
τ(c[i,1]

1 ⊗ an1) ∧ . . . ∧ τ(c[i,r−1]
1 ⊗ anr−1) ∧ anr

∧ bg+1

)
.

Co-multiplication is co-associative; thus,∑
i,h

C
[i;h]
p−r ⊗ c

[i;h]
1 ⊗ c

[i,1]
1 ⊗ . . . ⊗ c

[i,r−1]
1 =

∑
j

C
[j]
p−r ⊗ c

[j,1]
1 ⊗ . . . ⊗ c

[j,r]
1 ,

where the right side is the image of Cp under ∆: SpG → Sp−rG ⊗ TrG. It follows
that Q′

0 is equal to (−1)(g+1)nr times∑
j

b1 ∧ τ(C [j]
p−r) ∧ t

(
c
[j,1]
1 ⊗ τ(c[j,2]

1 ⊗ an1) ∧ . . . ∧ τ(c[j,r]
1 ⊗ anr−1) ∧ bg+1 ∧ anr

)
.

Recall that
r∑

k=1

nk is odd. Apply Lemma 3.10 to see that Q′
0 = (−1)g+1Q1 and

Q′′
0 = (−1)g+1Q2. �
We now gather the definitions and lemmas which are used in the proof of Lemma

3.4.

Lemma 3.11. If 2p +
r∑

k=1

nk = 2N − 1 and ani
= 1 for some i, then

Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr
) = (p + 2 − r)Φ(Cp ⊗ an1 ⊗ . . . ⊗ âni

⊗ . . . ⊗ anr
).

Proof. The hypothesis forces 2 ≤ r. In light of Lemma 3.1, we may assume that
i = 1 < r. The co-associativity of ∆ shows that the composition

(3.12) SpG
∆−→ Sp+2−rG ⊗ Tr−2G

∆⊗1−−−→ Sp+1−rG ⊗ G ⊗ Tr−2G

is equal to

(3.13) SpG
∆−→ Sp+1−rG ⊗ Tr−1G.

The first map in (3.12) is the first step in the calculation of Φ(Cp ⊗an2 ⊗ . . .⊗anr
).

The map of (3.13) is the first step in the calculation of Φ(Cp ⊗an1 ⊗ . . .⊗anr
). We

complete the proof by observing that if Cp+2−r = c
[1]
1 · · · c[p+2−r]

1 in Sp+2−rG, then

∆(Cp+2−r) is equal to
∑
j

c
[1]
1 · · · ĉ[j]

1 · · · c[p+2−r]
1 ⊗ c

[j]
1 in Sp+1−rG ⊗ G and

∑
j

τ(c[1]
1 · · · ĉ[j]

1 · · · c[p+2−r]
1 ) ∧ τ(c[j]

1 ⊗ an1) = (p + 2 − r)τ(Cp+2−r). �
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Definition 3.14. Let r, i, n1, . . . , nr, and p be non-negative integers with 2 ≤ r

and 2p + i − g +
r∑

h=1

nh = 2N − 1. Define the maps

Ξk, Ξεεεh
, and Ξall :

∧i
F ⊗ SpG ⊗ ∧n1 F ⊗ . . . ⊗ ∧nr F → R

by Ξk(ai ⊗ Cp ⊗ an1 ⊗ . . . ⊗ anr
) is equal to

Φ(Cp ⊗
k−1⊗
h=1

anh
⊗ βg(ai ∧ ank

) ∧ ank+1 ⊗
r⊗

h=k+2

anh
) if 1 ≤ k ≤ r − 1

Φ(Cp ⊗
r−2⊗
h=1

anh
⊗ ar−1 ∧ βg(ai ∧ anr

)) if k = r

0 for any other k,

Ξεεεh
(ai ⊗ Cp ⊗ an1 ⊗ . . . ⊗ anr

) is equal to
r∑

k=1

χ(nk = h)(−1)(i−g)(nk+···+nr)Ξk(ai ⊗ Cp ⊗ an1 ⊗ . . . ⊗ anr
),

and Ξall =
∑
h

Ξεεεh
.

Remark. The observation of (3.5) shows that Ξk(ai ⊗Cp ⊗ an1 ⊗ . . .⊗ anr
) is equal

to

(−1)(nk+i−g)(nk+1+···+nr)Φ(Cp ⊗ an1 ⊗ . . . ⊗ ânk
⊗ . . . ⊗ anr

∧ βg(ai ∧ ank
)),

for 1 ≤ k ≤ r − 1.

Lemma 3.15. If r, n1, . . . , nr, and p are non-negative integers with 2 ≤ r and

2p +
r∑

h=1

nh = 2N − 2, then

Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr−1 ⊗ anr
∧ b1) + Ξall(bg+1 ⊗ Cp ⊗ an1 ⊗ . . . ⊗ anr

) = 0.

Proof. The argument below (3.5) shows that it suffices to prove that T1 + T2 = 0,
where

T1 = (−1)g+1βg([Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr−1 ⊗ anr
∧ b1)](ωF )) and

T2 = (−1)g+1βg([Ξall(bg+1 ⊗ Cp ⊗ an1 ⊗ . . . ⊗ anr
)](ωF )).

Apply Lemma 3.3 to see that T1 = Q2(Cp⊗an1 ⊗ . . .⊗anr
)∧b1 and T2 = T

[1]
2 +T

[2]
2 ,

where

T
[i]
2 =

r∑
k=1

(−1)nk(1+nk+1+···+nr)Qi(Cp ⊗an1 ⊗ . . .⊗ ânk
⊗ . . .⊗anr

)∧βg(bg+1∧ank
).

A straightforward calculation, using the definition of the maps Qi, shows that
T1 + T

[1]
2 = 0 and T

[2]
2 = 0. �

Remark 3.16. When r = 1, Lemma 3.15 becomes: if 2p + n1 = 2N − 2, then

Φ(Cp ⊗ βg(bg+1 ∧ an1)) = (−1)n1+1(p + 1)Φ(Cp ⊗ an1 ∧ b1).

(The proof is obtained by combining Corollary 3.8 and the trick below (3.5).) In
particular, if p = N − 1, then Φ(Cp ⊗ b1) = 0.
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Lemma 3.17. If 2p +
r∑

k=1

nk = 2N − 3, then Φ(Cp · ϕ(a1) ⊗ an1 ⊗ . . . ⊗ anr
) is

equal to 
Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr

∧ βg(bg+1 ∧ a1))

+χ(2 ≤ r) · Ξall(bg+1 ∧ a1 ⊗ Cp ⊗ an1 ⊗ . . . ⊗ anr
)

+χ(r = 1) · Φ(Cp ⊗ an1 ∧ a1 ∧ b1) .

Proof. Definition 2.5, together with Proposition 1.1 (d), shows that the left side is
Φ (Cp ⊗ an1 ⊗ . . . ⊗ anr ∧ [a1(βg)](bg+1))

+
r−1∑
k=1

(−1)
nk(nk+1+···+nr)

Φ
(

Cp⊗an1⊗...⊗ânk
⊗...⊗anr−1⊗anr∧[a1(βg)](bg+1∧ank

)
)

Apply Proposition 1.1 (a) to write

[a1(βg)](bg+1 ∧ an) = a1 ∧ βg(bg+1 ∧ an) + βg(bg+1 ∧ a1 ∧ an).

The proof is complete when r = 1. Henceforth, we assume that 2 ≤ r. Lemma 3.15
shows that

Φ (Cp ⊗ an1 ⊗ . . . ⊗ anr ∧ a1 ∧ b1)

+
r−1∑
k=1

(−1)
nk(nk+1+···+nr)

Φ
(

Cp⊗an1⊗...⊗ânk
⊗...⊗anr−1⊗anr∧a1∧βg(bg+1∧ank

)
)

is equal to

(−1)nrΦ
(
Cp ⊗ an1 ⊗ . . . ⊗ anr−1 ∧ βg(bg+1 ∧ anr

∧ a1)
)
.

When the most recent expression is added to

r−1∑
k=1

(−1)nk(nk+1+···+nr)Φ
(
Cp ⊗ an1 ⊗ . . . ⊗ ânk ⊗ . . . ⊗ anr−1 ⊗ anr ∧ βg(bg+1 ∧ a1 ∧ ank )

)
,

the result is Ξall(bg+1 ∧ a1 ⊗ Cp ⊗ an1 ⊗ . . . ⊗ anr
). �

Lemma 3.18. If 1 ≤ j, 2p + j = 2N − 2, and m = [m1, . . . ,m`] is a vector
of non-negative integers with |m| = j + 1, in the sense of Definition 1.5, then
Φ(Cp ⊗ ∆m(aj ∧ b1)) is equal to

(p + 2 − r(m))Φ (Cp ⊗ ∆m−εεε1(aj) ∧ b1)

+
∑
1≤k

(mk + 1)Φ
(
Cp ⊗ ∆m+εεεk−εεεk+1(aj) ∧ b1

)
.

Remark. Recall, from Definition 1.6, that ∆m−εεε1 is the zero map unless 1 ≤ m1. If
X = xn1 ⊗ . . .⊗xnr

, then X ∧ b1 means xn1 ⊗ . . .⊗xnr
∧ b1. Lemma 3.1 guarantees

that the expression Φ (Cp ⊗ ∆m−εεε1(aj) ∧ b1) is well defined.

Proof. In the notation of Observation 1.10, we have Φ(Cp ⊗ ∆m(aj ∧ b1)) is equal
to

(−1)j
∑
h,i

(−1)|̀`̀(h−1)|Φ(Cp ⊗ a
[h,i]
− ⊗ b1 ∧ a[h,i] ⊗ a

[h,i]
+ ),
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which, by (3.5), is equal to∑
h,i

Φ(Cp ⊗ a
[h,i]
− ⊗ a[h,i] ⊗ a

[h,i]
+ ∧ b1) = T1 + T2,

where T1 is the summand with h = 1 and T2 is the summand with 2 ≤ h. Apply
Lemma 3.11 and Observation 1.8 to see that

T1 = (p + 2 − r(m))Φ (Cp ⊗ ∆m−εεε1(aj) ∧ b1) and

T2 =
∑
2≤h

(mh−1 + 1)Φ
(
Cp ⊗ ∆m+εεεh−1−εεεh

(aj) ∧ b1

)
. �

Lemma 3.19. Fix h, i, j, p, and m with |m| = j and 2p + j + i − g = 2N − 1.
Let Q :

∧i
F ⊗ SpG ⊗ ∧j

F → R be the composition

∧i
F ⊗ SpG ⊗ ∧j

F
1⊗1⊗∆−−−−−→ ∧i

F ⊗ SpG ⊗ ∧j−h
F ⊗ ∧h

F
q−→ R,

where q(ai ⊗ Cp ⊗ aj−h ⊗ ah) = Φ(Cp ⊗ ∆m−εεεh
(aj−h) ∧ βg(ai ∧ ah)). Then

Ξεεεh
(ai ⊗ Cp ⊗ ∆m(aj)) = (−1)(i−g)hQ(ai ⊗ Cp ⊗ aj).

Proof. The result follows quickly from Definition 3.14. �

Corollary 3.20. If |m| = j − 1, 2p + j = 2N − 2, and aj = a
[1]
1 ∧ . . . ∧ a

[j]
1 , then

j∑
k=1

(−1)k+1Φ(Cp ⊗ ∆m(a[1]
1 ∧ . . . ∧ â

[k]
1 ∧ . . . ∧ a

[j]
1 ) ∧ βg(bg+1 ∧ a

[k]
1 ))

is equal to (−1)jΞεεε1(bg+1 ⊗ Cp ⊗ ∆m+εεε1(aj)).

Proof. Apply Lemma 3.19. �

Lemma 3.21. If |m| = j − 1, 2p + j = 2N − 2, 1 ≤ h, and aj = a
[1]
1 ∧ . . . ∧ a

[j]
1 ,

then

j∑
k=1

(−1)k+1Ξεεεh
(bg+1 ∧ a

[k]
1 ⊗ Cp ⊗ ∆m(a[1]

1 ∧ . . . ∧ â
[k]
1 ∧ . . . ∧ a

[j]
1 ))

is equal to (−1)j(h + 1)Ξεεεh+1(bg+1 ⊗ Cp ⊗ ∆m−εεεh+εεεh+1(aj)).

Proof. Use Lemma 3.19 to convert the result into the following commutative dia-
gram: ∧j

F
∆−−−−→ ∧j−1−h

F ⊗ ∧1
F ⊗ ∧h

F

∆

y 1⊗mult

y∧j−1−h
F ⊗ ∧h+1

F
h+1−−−−→ ∧j−1 ⊗∧h+1

F.

�
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Proof of Lemma 3.4. Observe that q + j is even. Let S be the sum of the top
two lines of the right side of the proposed identity and T be the sum of the bottom
two lines. Use Definition 2.7, together with

(
p+i

N−i−j−1

)
+

(
p+i

N−i−j

)
=

(
p+i+1
N−i−j

)
, in

order to see that S is equal to∑
|m|=q+j+1

∏
1≤h

(h!)mh(−1)N−i
( p + i + 1

N − i − j

) (2N − 2)!

(2N − p − i − 1)!
Φ(Cp · Ci ⊗ ∆m(aq ∧ aj ∧ b1)).

Lemma 3.18 shows S that is equal to
∑

|m|=q+j

∏
1≤h

(h!)mh (−1)N−i( p+i+1
N−i−j)

(2N−2)!
(2N−p−i−1)! (p+i+1−r(m))Φ(Cp·Ci⊗∆m(aq∧aj )∧b1)

+
∑

|m|=q+j

∑
1≤k

∏
1≤h

(h!)mh (k+1)(−1)N−i( p+i+1
N−i−j)

(2N−2)!
(2N−p−i−1)! mkΦ(Cp·Ci⊗∆m(aq∧aj )∧b1)

Recall that
∑

(k + 1)mk = |m|+ r(m) = q + j + r(m) and that p + i + 1 + q + j is
equal to 2N − p − i − 1. It follows that S is equal to∑

|m|=q+j

∏
1≤h

(h!)mh(−1)N−i
( p + i + 1

N − i − j

) (2N − 2)!

(2N − p − i − 2)!
Φ (Cp · Ci ⊗ ∆m(aq ∧ aj) ∧ b1) .

Write S = S1 + S2, where S1 has m = εεεq+j and S2 involves all other m. In other
words, S1 is

(q + j)! (−1)N−i
( p + i + 1

N − i − j

) (2N − 2)!

(2N − p − i − 2)!
Φ (Cp · Ci ⊗ aq ∧ aj ∧ b1)

and S2 is∑
|m|=q+j
2≤r(m)

∏
1≤h

(h!)mh(−1)N−i
( p + i + 1

N − i − j

) (2N − 2)!

(2N − p − i − 2)!
Φ (Cp · Ci ⊗ ∆m(aq ∧ aj) ∧ b1) .

If q + j = 0, then T = 0 and S = S1; furthermore, Remark 3.16 shows that S1 = 0.
Henceforth, we assume that 2 ≤ q + j.

Definition 2.7 yields that T is equal to
j+q∑
k=1

(−1)k+1+N−i
∑

|m|=q+j−1

∏
1≤h

(h!)mh ( p+i+1
N−i−j)

(2N−2)!
(2N−p−i−2)! Φ(ϕ(a

[k]
1 )·Cp·Ci⊗∆m(a

[1]
1 ∧...∧â

[k]
1 ∧...∧a

[q+j]
1 )).

Apply Lemma 3.17 to write T = T1 + T2 + T3, where T1 is

j+q∑
k=1

(−1)k+1+N−i(q+j−1)!
( p+i+1
N−i−j

) (2N−2)!
(2N−p−i−2)!

Φ(Cp ·Ci⊗a
[1]
1 ∧. . .∧â

[k]
1 ∧. . .∧a

[q+j]
1 ∧a

[k]
1 ∧b1),

T2 =


j+q∑
k=1

(−1)k+1
∑

|m|=q+j−1

∏
1≤h

(h!)mh(−1)N−i
(

p+i+1
N−i−j

) (2N−2)!
(2N−p−i−2)!

Φ(Cp · Ci ⊗ ∆m(a[1]
1 ∧ . . . ∧ â

[k]
1 ∧ . . . ∧ a

[q+j]
1 ) ∧ βg(bg+1 ∧ a

[k]
1 )),

and

T3 =


j+q∑
k=1

(−1)k+1
∑

|m|=q+j−1
2≤r(m)

∏
1≤h

(h!)mh(−1)N−i
(

p+i+1
N−i−j

) (2N−2)!
(2N−p−i−2)!

Ξall(bg+1 ∧ a
[k]
1 ⊗ Cp · Ci ⊗ ∆m(a[1]

1 ∧ . . . ∧ â
[k]
1 ∧ . . . ∧ a

[q+j]
1 )).
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Observe that S1 + T1 = 0. Lemma 3.21 yields that T3 is∑
|m|=q+j
2≤r(m)

∑
1≤k

∏
1≤h

(h!)mh(−1)N−i
(

p+i+1
N−i−j

) (2N−2)!
(2N−p−i−2)!Ξεεεk+1(bg+1⊗Cp·Ci⊗∆m(aq∧aj)).

In a similar manner, Corollary 3.20 yields that T2 is

∑
|m|=q+j
2≤r(m)

∏
1≤h

(h!)mh(−1)N−i
( p + i + 1

N − i − j

) (2N − 2)!

(2N − p − i − 2)!
Ξεεε1 (bg+1 ⊗ Cp · Ci ⊗ ∆m(aq ∧ aj)).

We see that T2 + T3 is equal to

∑
|m|=q+j
2≤r(m)

∏
1≤h

(h!)mh(−1)N−i
( p + i + 1

N − i − j

) (2N − 2)!

(2N − p − i − 2)!
Ξall(bg+1 ⊗ Cp · Ci ⊗ ∆m(aq ∧ aj)).

Apply Lemma 3.15 to conclude that S2 + T2 + T3 = 0. �

4. The complex M is acyclic.

In this section we prove Theorem 4.3, which establishes the acyclicity of M. At
the end of the section, we record a few consequences of the fact that J is a perfect
ideal. In the proof of Theorem 4.3 we use “generic data”, which is described below.
Such data forces one to deal with bases. In fact, bases play only a very minor role
in the present section; however, they play a significant role in section 5. We have
recorded all of our conventions about bases at this time. These conventions are
different than the ambient conventions of 2.2.

Convention 4.1. Adopt Data 2.1. Fix dual bases fff1, . . . , ffff and fff∗
1, . . . , fff

∗
f for F

and F ∗, respectively, and ggg1, . . . , gggg and ggg∗1, . . . , ggg
∗
g for G and G∗, respectively. For

each index set I = {i1, . . . , i`}, with i1 < · · · < i`, we write |I| = `,

fff I = fff i1 ∧ . . . ∧ fff i`
, and fff∗

I = fff∗
i`
∧ . . . ∧ fff∗

i1 .

Let [`] represent the index set {1, . . . , `}.
Generic Data 4.2. Adopt Convention 4.1. Assume that R0 is a commutative
noetherian ring, ϕ is represented by a g × f matrix of indeterminates (xij), bg+1 is
the element

∑
vIfff I , where I varies over all index sets with |I| = g + 1 and {vI} is

a set of indeterminates, and R is the polynomial ring R0[{xij}, {vI}].
Theorem 4.3. Adopt Data 2.1. If J is a proper ideal of R with f − g ≤ gradeJ,
and (f − g − 2)! is a unit in R, then J is a perfect ideal of grade f − g, and M is
a resolution of R/J. Furthermore, if the data of 2.1 is local (i.e., (R,m) is a local
ring, im ϕ ∈ mG, and bg+1 ∈ m

∧g+1
F ) or homogeneous in the sense of Remark

2.8 (d) with 1 ≤ aaa,bbb, then the resolution M is minimal.

Proof. The assertion about minimality is obvious. We first establish acyclicity for
generic data, as in 4.2, with R0 = Z[1/(f − g − 2)!]. Once the result is established
in this case, then the principal of the transfer of perfection; see, for example [3,
Theorem 3.5], yields the result in general.
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Observe that the hypothesis f − g ≤ gradeJ holds in the generic situation.
We prove this by showing that there exists a regular sequence of linear forms with
f−g ≤ grade J̄ , where ¯ represents reduction modulo the regular sequence. Indeed,
the specialization

ϕ̄ =


0 x1 x2 . . . xf−g 0 0 . . . 0
0 0 x1 x2 . . . xf−g 0 . . . 0

.

.

.
0 0 . . . 0 0 x1 x2 . . . xf−g

 and b̄g+1 =

f−g∑
i=1

xifff i∧fff i+1∧ . . .∧fff i+g

yields b̄1 =
f−g∑
i=1

(±xg+1
i + yi)fff i + a1, for some elements yi ∈ (x1, . . . , xi−1) and a1 in

Rffff−g+1 ⊕ . . .⊕Rffff ; and therefore, the radical of J̄ is equal to the (x1, . . . , xf−g).
Fix a prime ideal P in R with gradeP ≤ f − g − 1. Since

gradeP < f − g + 1 = grade If−g(ϕ),

we know that some g×g minor of ϕ is a unit in RP . For the time being, we work over
the ring RP . There exists an isomorphism θ : F → F , of determinant 1, such that
ϕ◦θ is equal to ϕ′ = [ I 0 ]. Lemma 4.4 shows that MP is isomorphic to a complex
M′, formed using ϕ′. Lemma 4.5 shows that the homology of M′ is isomorphic to
the homology of a complex M′′, which is formed with g = 0. Proposition 2.16 shows
that M′′ is the Koszul complex which is associated to the ideal J = R. It follows
that M′′ is split exact; and therefore, MP is also split exact. Now we return to the
ring R. The acyclicity lemma [4, Corollary 4.2] yields that M is a resolution. Also,
we know that

gradeJ ≤ pdR R/J ≤ f − g ≤ gradeJ,

and the proof is complete. �
Lemma 4.4. Adopt Data 2.1. Let θ : F → F be an isomorphism of determinant
one. If ϕ′ = ϕ◦θ and b′g+1 = (

∧g+1
θ−1)(bg+1), then the complexes M = M(bg+1, ϕ)

and M′ = M(b′g+1, ϕ
′) are isomorphic.

Proof. Define Θ: M′ → M by{
Θ(γ(i)

1 ⊗ αj) = γ
(i)
1 ⊗ (

∧j
θ−1∗)(αj)

Θ(Cp ⊗ aq) = Cp ⊗ (
∧q

θ)(aq).

It is clear that Θ is an isomorphism of modules. It is not difficult to show that it
is a map of complexes. The most interesting step involves showing that

Φ′[Cp ⊗ (
∧n1 θ−1)(an1) ⊗ . . . ⊗ (

∧nr θ−1)(anr
)] = Φ(Cp ⊗ an1 ⊗ . . . ⊗ anr

).

This holds because

τ ′[c1 ⊗ (
∧n

θ−1)(an)] = (
∧n+2

θ−1)[τ(c1 ⊗ an)],

and θ has determinant 1. �



26 ANDREW R. KUSTIN

Lemma 4.5. Adopt Data 2.1. Suppose that ϕ decomposes as

ϕ =
[

ϕ′ 0

0 1

]
: F = F ′ ⊕ Raaa1 → G = G′ ⊕ Gccc1,

where F ′ and G′ are free R−modules of rank f − 1 and g − 1, respectively. Let

bg+1 = b′g ∧ aaa1 + b′g+1,

with b′g ∈ ∧g
F ′ and b′g+1 ∈ ∧g+1

F ′, be the corresponding decomposition of bg+1.
Then the complexes M = M(bg+1, ϕ) and M′ = M(b′g, ϕ′) have the same homology.

Proof. Let F ′∗ ⊕ Rααα1 and G′∗ ⊕ Rγγγ1 be the corresponding decompositions of F ∗

and G∗, respectively. It follows that

ϕ∗ =
[

ϕ′∗ 0

0 1

]
: G∗ = G′∗ ⊕ Rγγγ1 → F ∗ = F ′∗ ⊕ Rααα1.

Write ωF = ωF ′ ∧ aaa1, ωG = ωG′ ∧ ccc1, ωF∗ = ααα1 ∧ ωF ′∗ , and ωG∗ = γγγ1 ∧ ωG′∗ . Let
β′

g−1 = (
∧g−1

ϕ′∗)(ωG′∗) and b′1 = β′
g−1(b

′
g). Observe that

βg = ααα1 ∧ β′
g−1 and b1 = −b′1.

Let A be the sum of all modules from M of the form

DiG
′∗γγγ(k)

1 ⊗ ∧j
F ′∗ ∧ααα`

1, with 1 ≤ k or 1 = `.

Observe that d(A) ⊆ A. It follows that A is a complex with differential given by
the restriction of d to A. Consider the map s : A → A, given by{

s(γ′(i)
1 γγγ

(k)
1 ⊗ α′

j) = 0

s(γ′(i)
1 γγγ

(k)
1 ⊗ααα1 ∧ α′

j) = γ
′(i)
1 γγγ

(k+1)
1 ⊗ α′

j .

It is easy to see that ds + sd = idA; and therefore, A is a split exact complex. At
this point we know that M/A is a complex with Hi(M/A) isomorphic to Hi(M) for
all i.

We next show that the map ρ : M′ → M/A, which is given by{
ρ(γ′(i)

1 ⊗ α′
j) = (−1)i+jγ

′(i)
1 ⊗ α′

j

ρ(C′
p ⊗ a′

q) = (−1)p+q+1C′
p ⊗ a′

q,

is a map of complexes. The only complicated step in this calculation involves
showing that

(−1)p+q+1Ψp,q,i,j(C′
p ⊗ a′

q ⊗ ⊗ ) = ρΨ′
p,q,i,j(C

′
p ⊗ a′

q ⊗ ⊗ )

in DiG
′∗ ⊗ ∧j

F ′∗, when C′
p ⊗ a′

q ∈ SpG
′ ⊗ ∧q

F ′ and

2p + 2i + j + q = 2N − 1, p + q ≤ N − 1, and i + j ≤ N.
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On the other hand, the above equation is equivalent to

Ψp,q,i,j(C′
p ⊗ a′

q ⊗ C′
i ⊗ a′

j) = (−1)i+pΨ′
p,q,i,j(C

′
p ⊗ a′

q ⊗ C′
i ⊗ a′

j)

for C′
i⊗a′

j ∈ SiG
′⊗∧j

F ′, and this equation holds because τ(c′1⊗a′
n) = −τ ′(c′1⊗a′

n).
Define B to be the cokernel of ρ. Notice that B consists of the modules

SpG
′ · cccr

1 ⊗
∧q

F ′ ∧ aaa`
1, with 1 ≤ r or 1 = `.

The differential on B is given by d(C′
p · cccr

1 ⊗ a′
q ∧ aaa`

1) is equal to
C′

p · cccr
1 ⊗ b1 ∧ a′

q ∧ aaa`
1

+
q∑

k=1

(−1)k+1ϕ′(a′[k]
1 ) · C′

p · cccr
1 ⊗ a

′[1]
1 ∧ . . . ∧ â

′[k]
1 ∧ . . . ∧ a

′[q]
1 ∧ aaa`

1

+δ`1(−1)qC′
p · cccr+1

1 ⊗ a′
q,

where a′
q = a

′[1]
1 ∧ . . . ∧ a

′[q]
1 . Consider the map s : B → B, which is given by{

s
(
C′

p · cccr
1 ⊗ a′

q ∧ aaa1

)
= 0

s
(
C′

p · cccr
1 ⊗ a′

q

)
= C′

p · cccr−1
1 ⊗ aaa1 ∧ a′

q.

There is no difficulty in showing that s ◦ d + d ◦ s = idB. Thus, B is split exact and
the short exact sequence of complexes

0 → M′ ρ−→ M/A −→ B → 0,

shows that the proof is complete. �
We conclude the section by recording a few consequences of the fact that J is a

perfect ideal. First, we estimate the size of the singular locus of R/J in the generic
situation.

Proposition 4.6. Adopt Data 4.2, with (f − g − 2)! a unit in R0. If P is a prime
ideal of R with depthRP ≤ f −g +3, then (R/J)P is a localization of a polynomial
ring over R0.

Proof. The hypothesis on depthRP ensures that some g − 1 × g − 1 minor of ϕ is
not an element of P . For notational convenience, we assume that δ /∈ P , where δ is
the determinant of the lower left hand g−1×g−1 submatrix of ϕ. Let θ1 : F → F
and θ2 : G → G be isomorphisms so that

θ2 ◦ ϕ ◦ θ1 =
[

0 ϕ′

I 0

]
.

It is easy to see that the ideal J((
∧g+1

θ−1
1 )(bg+1), θ2 ◦ϕ ◦ θ1) is equal to J . Let b′2

be the element fff [g−1][(
∧g+1

θ−1
1 )(bg+1)] of

∧2(
⊕

g≤k Rfffk). Lemma 4.5 shows that
J is equal J(b′2, ϕ′). Let R1 be the polynomial ring which is obtained by adjoining
complement of

{x1k | g ≤ k ≤ f} ∪ {v[g−1],p,q | g ≤ p < q ≤ f},
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in {xij} ∪ {vI}, to R0. A careful analysis of the matrix θ1 shows that θ1 is an
invertible map over (R1)δ, the coefficients of ϕ′ and b′2 are algebraically indepen-
dent over (R1)δ, and Rδ is equal to the polynomial ring obtained by adjoining the
coefficients of ϕ′ and b′2 to (R1)δ. The ideal I1(b

′(N)
2 ) in Rδ is generated by the

maximal order pfaffians of a generic alternating matrix of odd size. It follows that
I1(ϕ′) + I1(b

′(N)
2 ) has grade f − g + 4 in Rδ; therefore, the hypothesis on depthRP

ensures that I1(ϕ′) + I1(b
′(N)
2 ) is not contained in PRδ. We have successfully re-

duced to the case g = 1, where the result is both well known and easy to prove.
�

Corollary 4.7. Adopt Data 4.2, with (f − g − 2)! a unit in R0. Let R = R/J.

(a) If R0 is a domain, then so is R.
(b) Let k be an integer with k ≤ 3.

(i) If R0 satisfies the Serre condition (Sk+1), then so does R.
(ii) If R0 satisfies the Serre conditions (Rk) and (Sk+1), then so does R.

In particular, if the ring R0 is reduced, then so is R; if the ring R0 is normal, then
so is R.

Proof. This result follows from Proposition 4.6 by way of a standard argument. See
[3, Theorem 2.10] for (a), and [11, Theorem 9.4] or [10, Corollary 5.4] for (b). �

Finally, we describe the canonical module of R/J .

Corollary 4.8. Adopt Data 2.1 with J a proper ideal of R, 4 ≤ f − g ≤ gradeJ,
and (f − g − 2)! a unit in R. Fix an element ag in

∧g
F . Let L be the ideal

L =
({[τ(CN ) ∧ ag](ωF∗) | CN ∈ SNG}, βg(ag), J)

J

of R/J. Then there exists an R/J−module surjection λ : Extf−g
R (R/J,R) � L.

Furthermore, if 1 ≤ gradeL, then λ is an isomorphism.

Remarks. (a) If R is a Gorenstein ring, then Extf−g
R (R/J,R) is the canonical mod-

ule of R/J .

(b) In the generic situation of 4.2, the hypothesis 1 ≤ gradeL does hold because
the ideal Ig(ϕ) has positive grade in R/J and βg(ag) can be taken to be a g × g
minor of ϕ.

(c) If 2 = f − g, then the canonical module of R/J is already well understood.

Proof. Let K denote Extf−g
R (R/J,R). Theorem 4.3 ensures that M∗ is a resolution

of K. Use the hypotheses about (f − g − 2)! and f − g to see that K is presented
by

(SN−1G ⊗ F ) ⊕ F ∗ d−→ SNG ⊕ R → K → 0,

where

d

[
CN−1 ⊗ a1

α1

] [
CN−1 · ϕ(a1)

−[τ(CN−1) ∧ bg+1 ∧ a1](ωF∗) + b1(α1)

]
.
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Consider the map λλλ : SNG ⊕ R → R, which is given by

λλλ(CN ) = [τ(CN ) ∧ ag](ωF∗) and λλλ(1) = βg(ag).

The calculations of section 3 show that τ(ϕ(a1)) = a1 ∧ b1 + βg(bg+1 ∧ a1) and

0 =


τ(CN−1) ∧ βg(ag+2) ∧ ag

−τ(CN−1) ∧ ag+2 ∧ βg(ag)

+
∑̀

b1 ∧ τ(c[1]
1 ) ∧ . . . ∧ ̂

τ(c[`]
1 ) ∧ . . . ∧ τ(c[N−1]

1 ) ∧ t(c[`]
1 ⊗ ag+2) ∧ ag,

for CN−1 = c
[1]
1 · · · c[N−1]

1 . (Use Corollaries 3.8 and 3.7 and the idea below (3.5).)
It follows that the image of λλλ ◦ d is in J , and therefore, λλλ induces the desired
R/J−module surjection λ : K � L. The last assertion is obvious because K is a
torsion-free R/J−module of rank one. �

5. Further questions.

There are at least three promising directions for further study.

1. We hope that the resolution M is able to shed light on the case when f − g is
odd. In particular, we want to know the extra generators of Junm ) J . The case
g = 1 provides encouragement for this hope. We have seen that when g = 1 and f
is odd, then J is a Huneke-Ulrich almost complete intersection ideal. On the other
hand, when g = 1 and f is even, then Junm is generated by J together with the
pfaffian b

(2)
2 . In other words, Junm is a Huneke-Ulrich deviation two Gorenstein

ideal. Furthermore, the resolution of a Huneke-Ulrich almost complete intersection
[9] is very similar to the resolution of a Huneke-Ulrich Gorenstein ideal [8, 14, 7].
(The similarity is best exhibited in [8].)

2. A great deal is already known about the Rees algebra of an ideal. (See, for
example [15], especially its extensive bibliography.) In the present paper, we resolve
the Rees algebra of certain projective dimension two modules. We hope to use the
insights we have gained to learn more about the Rees algebra of modules.

3. We are hopeful that the complex M may be modified in such a way that the
hypothesis “(f − g − 2)! is a unit in R” may be removed from Theorem 4.3. No
modification is needed when f −g = 2; see Example 2.9. The next result shows the
flavor of the desired result.

Theorem 5.1. Adopt Data 2.1 with f = g + 4. Let (M, d) be the complex of
Example 2.10 and let (M′, d′) be the sequence of maps and modules with M′

i = Mi

and d′
i is equal to di, except

d′2

 0

0
c1

 = p(c1 ⊗ ), d′3

[
0
a1

]
=

 [a1 ∧ bg+1](ωF∗ )

−p( ⊗ a1)
ϕ(a1)

 , and d′4

[
0
1

]
=

[ −p( ⊗ )
b1

]
.

Then there exists a map p : G ⊗ F → R such that
(1) M′ is a complex,
(2) M′ is exact whenever 4 ≤ gradeJ, (the commutative noetherian ring R is

arbitrary), and
(3) if 2 is a unit in R, then M′ and M are isomorphic.
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Proof. The key step in this argument is that we prove that there exists a map
p : G ⊗ F → R and an element ξ ∈ D2G

∗ such that

(5.2) P (c1 ⊗ a1) = 2p(c1 ⊗ a1) + ξ(c1 · ϕ(a1)),

for all c1 ⊗ a1 ∈ G ⊗ F . For the time being, let us assume that (5.2) holds. Let
τ : M → M′ be given by τ0 = id, τ1 = id,

τ2

α2

0
0

 =

α2

0
0

 , τ2

 0
γ1

0

 =

 0
γ1

0

 , τ2

 0
0
c1

 =

 0
c1(ξ)
2c1

 ,

τ3 =
[

1 0
0 2

]
and τ4 =

[
1 −ξ
0 2

]
.

It is easy to verify that τ is a homomorphism of complexes, and it is clear that
τ is an isomorphism whenever 1/2 ∈ R. The rest of this paragraph is devoted to
establishing assertion (2). Exactly as in the proof of Theorem 4.3, it suffices to
prove that M′ is acyclic when the data is generic, in the sense of 4.2, with R0 = Z.
We are not interested in establishing analogues of Lemmas 4.4 and 4.5 for M′.
Instead, we use the long exact sequence of homology which is associated to to the
short exact sequence of complexes:

0 → M
τ−→ M′ −→ N → 0,

where N, which is defined to be coker τ , is

0 → R̄
n4−→ F̄

n3−→ Ḡ
n2−→ 0 n1−→ 0,

with n4(1̄) = b̄1 and n3(ā1) = ϕ(a1). (We take to mean modulo 2.) By the
acyclicity lemma, it suffices to show that M′

δ is acyclic, whenever δ is a g× g minor
of ϕ. Fix such a δ, localize at δ, and change notation. (That is, write R in place of
Rδ, M in place of Mδ, N in place of Nδ, etc.) Pick a basis for F so that ϕ = [ I 0 ].
It follows that b1 =

∑4
i=1 rifffg+i for some ri ∈ R. It also follows that r1, r2, r3, r4

is a regular sequence which generates J . Let F ′ =
⊕4

i=1 Rfffg+i. We know, from
Proposition 2.16, that

Hi(M) ≡
{

0 if i = 1, 3, or 4
b1(

∧3 F ′)
2b1(

∧3 F ′) if i = 2.

Furthermore, the isomorphism σ : H2(M) → b1(
∧3 F ′)

2b1(
∧3 F ′) is induced by the map which

sends the cycle α2

γ1

c1

 ∈ M2
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to (
∧2

π∗)(α2), where π : F → F ′ is the projection which annihilates
⊕g

i=1 Rfff i.
On the other hand, the map n3 is a surjection, so we see that

Hi(N) =
{ 0 if i = 1, 2, or 4

F ′
2F ′+Rb1

if i = 3.

The connecting homomorphism ∂ : H3(N) → H2(M) carries ā1 ∈ N3, with a1 ∈ F ′,
to the class of  [a1 ∧ bg+1](ωF∗)

γ1

c1


in H2(M), for some γ1 ∈ G∗ and some c1 ∈ G. Thus,

σ ◦ ∂(ā1) = ±[a1 ∧ b1](ωF ′∗) = ±b1(a1[ωF ′∗ ]).

It follows that ∂ : H3(N) → H2(M) is an isomorphism, and M′ is exact.
Return to the original notation. The rest of the proof is devoted to establishing

(5.2). We use the basis convention of 4.1. Let ξ ∈ D2G
∗ be the element

− ∑
i<j

g−1∑̀
=1

[
fff` ∧

(
fff∗

` ∧ fff∗
[`−1]

∧ fff [`−1]

(
(
∧g−2 ϕ∗) [(gggi ∧ gggj)(ωG∗)]

) )
(bg+1) ∧ bg+1

]
(ωF∗ ) ·ggg∗i ggg∗j ,

and p : G ⊗ F → R be the map p(c1 ⊗ a1) =
3∑

i=1

pi(c1 ⊗ a1), where p1(c1 ⊗ a1),

p2(c1 ⊗ a1), and p3(c1 ⊗ a1) are equal to∑
|I|=g−1

[
fff I

(
(
∧g−1

ϕ∗) [c1(ωG∗)]
)
· a1 ∧ fff I ∧ [fff∗

I(bg+1)](2)
]
(ωF∗),


−

g−1∑̀
=1

∑
k

∑
|I|=g−`−1

(fffk ∧ fffI ∧ fff [`−1])
(
(
∧g−1 ϕ∗) [c1(ωG∗)]

)
· fff∗

k(a1)·[
fff` ∧ fffk ∧ fffI ∧ fff [`−1] ∧ (fff∗

` ∧ fff∗
[`−1]

∧ fff∗
I )(bg+1) ∧ (fff∗

k ∧ fff∗
[`−1]

∧ fff∗
I )(bg+1)

]
(ωF∗ ),

and
∑
j<i

g−1∑̀
=1

[
fff` ∧

(
fff∗

` ∧ fff∗
[`−1]

∧ fff [`−1]

(
(
∧g−2 ϕ∗) [(gggi ∧ gggj)(ωG∗ )]

) )
(bg+1) ∧ bg+1

]
(ωF∗)

·ggg∗i (c1) · ggg∗j (ϕ(a1)),

respectively. (In the sum for p1, I varies over all subsets of {1, . . . , f} with g − 1
elements.) The interplay between the symmetric object (ggg∗iggg

∗
j )(c1c

′
1) and the alter-

nating object gggi ∧ gggj yields∑
i<j

(ggg∗iggg
∗
j )(c1c

′
1) · gggi ∧ gggj = c1 ∧ c′1 − 2

∑
j<i

ggg∗i (c1) · ggg∗j (c′1) · gggi ∧ gggj ;

and therefore, we see that ξ(c1 · ϕ(a1)) = T1 + 2p3(c1 ⊗ a1), where T1 is equal to

−
g−1∑̀
=1

[
fff` ∧

(
fff∗

` ∧ fff∗
[`−1]

∧ fff [`−1]

(
(
∧g−2 ϕ∗) [(c1 ∧ ϕ(a1))(ωG∗)]

) )
(bg+1) ∧ bg+1

]
(ωF∗ ).

Apply Proposition 1.1 (d) to see that

T1 =
g−1∑̀
=1

[
fff` ∧

(
fff∗

` ∧ fff∗
[`−1]

∧ (fff [`−1] ∧ a1)
(
(
∧g−1 ϕ∗) [c1(ωG∗)]

) )
(bg+1) ∧ bg+1

]
(ωF∗).

Lemmas 5.3 and 5.4 now yield P (c1 ⊗ a1)− T1 = 2[p1(c1 ⊗ a1) + p2(c1 ⊗ a1)]. �
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Lemma 5.3. Adopt Data 2.1 with f = g +4. Then αg−1(bg+1)∧a1 ∧ bg+1 is equal
to 

2
∑

|I|=g−1

fff I(αg−1) · a1 ∧ fff I ∧ [fff∗
I(bg+1)](2)

+
∑
k

∑
|I|=g−2

(fff I ∧ fffk)(αg−1) · fff∗
k(a1) · fffk ∧ (fff∗

k ∧ fff∗
I)(bg+1) ∧ bg+1.

Proof. First we fix k and I, with |I| = g − 1. Consider

T1 = fffk ∧ fff∗
I(bg+1) ∧ bg+1, T2 = 2fffk ∧ fff I ∧ [fff∗

I(bg+1)](2), and

T3 = fffk ∧ (fff∗
k ∧ fffk(fff∗

I))(bg+1) ∧ bg+1

Observe that T1 = T2 + T3. Indeed, if k ∈ I, then T2 = 0 and T3 is obviously equal
to T1. If k /∈ I, then T3 = 0 and, since T1 and T2 are both in

∧f
F , it suffices to

notice that the equality holds after applying fff∗
I . Now we allow k and I to vary.

Apply
∑
k

∑
|I|=g−1

fff∗
k(a1) · fff I(αg−1) to both sides of T1 = T2 + T3. The proof is

complete because∑
|I|=g−1

fff I ⊗ fff∗
k ∧ fffk(fff∗

I) =
∑

|I|=g−2

fff I ∧ fffk ⊗ fff∗
k ∧ fff∗

I . �

Lemma 5.4. Adopt Data 2.1 with f = g + 4. Then the sum

∑
k

∑
|I|=g−2

(fff I ∧ fffk)(αg−1) · fff∗
k(a1) · fffk ∧ (fff∗

k ∧ fff∗
I)(bg+1) ∧ bg+1

−
g−1∑̀
=1

fff ` ∧
(
fff∗

` ∧ fff∗
[`−1] ∧ (fff [`−1] ∧ a1)(αg−1)

)
(bg+1) ∧ bg+1

+2
g−1∑̀
=1

∑
k

∑
|I|=g−`−1

(fffk ∧ fff I ∧ fff [`−1])(αg−1) · fff∗
k(a1)·

fff ` ∧ fffk ∧ fff I ∧ fff [`−1] ∧ (fff∗
` ∧ fff∗

[`−1] ∧ fff∗
I)(bg+1) ∧ (fff∗

k ∧ fff∗
[`−1] ∧ fff∗

I)(bg+1).

is equal to zero.

Proof. First we fix k, `, and J with k, ` /∈ J and |J | = g − 2. Observe that

(5.5) 0 =

fffk ∧ (fff∗
k ∧ fff∗

J)(bg+1) ∧ bg+1

−fff ` ∧ (fff∗
` ∧ fff∗

J )(bg+1) ∧ bg+1

+2(−1)gfff ` ∧ fffk ∧ fffJ ∧ (fff∗
` ∧ fff∗

J )(bg+1) ∧ (fff∗
k ∧ fff∗

J )(bg+1).

Indeed, the assertion is obvious if k = `. If k 6= `, then it suffices to prove equality
after applying fff∗

J ∧ fff∗
k ∧ fff∗

` . This calculation is long, but straightforward.
Now we turn to the identity from the statement of the lemma. Each index set I

from the first sum has the form I = [` − 1] ∪ I ′, where |I ′| = g − ` − 1 and ` /∈ I ′,
for some `. It follows that the first sum is equal to

g−1∑
`=1

∑
k

∑
|I|=g−`−1

`/∈I

(fff I ∧fff [`−1]∧fffk)(αg−1) ·fff∗
k(a1) ·fffk ∧ (fff∗

k ∧fff∗
[`−1]∧fff∗

I)(bg+1)∧ bg+1.
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Expand (fff [`−1]∧a1)(αg−1) and a1 in terms of the bases to see that the second sum
is equal to

−
g−1∑
`=1

∑
k

∑
|I|=g−`−1

(fff I∧fff [`−1]∧fffk)(αg−1)·fff∗
k(a1)·fff `∧

(
fff∗

` ∧ fff∗
[`−1] ∧ fff∗

I

)
(bg+1)∧bg+1.

Apply (5.5) to complete the proof. �
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