THE POINCARÉ SERIES OF EVERY FINITELY GENERATED MODULE OVER A CODIMENSION FOUR ALMOST COMPLETE INTERSECTION IS A RATIONAL FUNCTION

ANDREW R. KUSTIN AND SUSAN M. PALMER

ABSTRACT. Let (R, \mathfrak{M}, k) be a regular local ring in which two is a unit and let A = R/J, where J is a five generated grade four perfect ideal in R. We prove that the Poincaré series $P_A^M(z) = \sum_{i=0}^{\infty} \dim_k \operatorname{Tor}_i^A(M, k) z^i$ is a rational function for all finitely generated A-modules M. We also prove that the Eisenbud conjecture holds for A, that is, if M is an A-module whose Betti numbers are bounded, then the minimal resolution of M by free A-modules is eventually periodic of period at most two.

Let A be a quotient of a regular local ring (R, \mathfrak{M}, k) . If any of the following conditions hold:

- (a) $\operatorname{codim} A \leq 3$, or
- (b) $\operatorname{codim} A = 4$ and A is Gorenstein, or
- (c) A is one link from a complete intersection, or
- (d) A is two links from a complete intersection and A is Gorenstein,

then it has been shown in [4] and [8] that all of the following conclusions hold:

- (1) The Poincaré series $P_A^M(z) = \sum_{i=0}^{\infty} \dim_k \operatorname{Tor}_i^A(k, M) z^i$ is a rational function for all finitely generated A-modules M.
- (2) If R contains the field of rational numbers, then the Herzog Conjecture [14] holds for the ring A. That is, the cotangent modules $T_i(A/R, A)$ vanish for all large *i* if and only if A is a complete intersection.
- (3) The Eisenbud Conjecture [10] holds for the ring A. That is, if M is a finitely generated A-module whose Betti numbers are bounded, then the minimal resolution of M eventually becomes periodic of period at most two.

In the present paper we prove that conclusions (1) - (3) all hold in the presence of hypothesis

(e) A is an almost complete intersection of codimension four in which two is a unit.

In each of the cases (a) - (e), there are three steps to the process:

- (i) one proves that the minimal R-resolution of A is a DG-algebra;
- (ii) one classifies the Tor-algebras $\operatorname{Tor}^{R}_{\bullet}(A,k)$; and

Key words and phrases. almost complete intersection, Betti numbers, DG-algebra, Eisenbud conjecture, Golod algebra, Golod homomorphism, perfect ideal, Poincaré series, Tor-algebra. 1991 Mathematics Subject Classification. 13C40, 13D40, 14M07, 13H10, 18G15.

The first author was supported in part by the National Science Foundation.

(iii) one completes the proof of (1) - (3).

For hypothesis (e), step (i) was begun in [19] and [20], and was completed in [18]; step (ii) was carried out in [17]; and step (iii) is contained in the present paper.

In the following section by section description of the paper, let (R, \mathfrak{M}, k) be a regular local ring and (A, \mathfrak{m}, k) be the quotient R/J, where J is a grade four almost complete intersection ideal in R. Section 1 is a review of the classification of the Tor-algebras $\operatorname{Tor}^R_{\bullet}(A, k)$. Many of the results in this paper are obtained by proving that the appropriate DG Γ -algebra is Golod. The definition and properties of Golod algebras may be found in section 2. We compute the Poincaré series $P_A^k(z)$ in section 3. In section 4, we apply a new result (Theorem 4.1), due to Avramov, in order to prove that the Poincaré series $P_A^M(z)$ is rational for all finitely generated A-modules M. The growth of the Betti numbers of M is investigated in section 5. The proof, in [8], that property (1) holds in the presence of any of conditions (a) – (d), depends on proving that there is a Golod homomorphism $C \twoheadrightarrow A$ from a complete intersection C onto A. In section 6 we observe that while the technique of [8] applies to most codimension four almost complete intersections A, there do exist A for which it does not apply. It follows that the generalization in Theorem 4.1 of the technique from [8] is essential to the completion of this paper.

In this paper "ring" means commutative noetherian ring with one. The grade of a proper ideal I in a ring R is the length of the longest regular sequence on R in I. The ideal I of R is called *perfect* if the grade of I is equal to the projective dimension of the R-module R/I. A grade g ideal I is called a *complete intersection* if it can be generated by g generators. Complete intersection ideals are necessarily perfect. The grade g ideal I is called an *almost complete intersection* if it is a **perfect** ideal which is **not** a complete intersection and which can be generated by g + 1generators. We use the concepts "graded k-algebra", "trivial module", and "trivial extension" in the usual manner; see [17]. If S_{\bullet} is a divided power algebra, then $S_{\bullet} < x >$ represents a divided power extension of S_{\bullet} . The algebra $(S_{\bullet} = \bigoplus_{i \ge 0} S_i, d)$ is a DG Γ -algebra if

- (a) the multiplication $S_i \times S_j \to S_{i+j}$ is graded-commutative $(s_i s_j = (-1)^{ij} s_j s_i)$ for $s_k \in S_k$ and $s_i s_i = 0$ for i odd) and associative,
- (b) the differential $d: S_i \to S_{i-1}$ satisfies $d(s_i s_j) = d(s_i)s_j + (-1)^i s_i d(s_j)$,
- (c) for each homogeneous element s in S_{\bullet} of positive even degree, there is an associated sequence of elements $s^{(0)}, s^{(1)}, s^{(2)}, \ldots$ which satisfies $s^{(0)} = 1$, $s^{(1)} = s$, deg $s^{(k)} = k \deg s$, as well as a list of other axioms (see [13, Definition 1.7.1]), and
- (d) $d(s^{(k)}) = (ds)s^{(k-1)}$ for each homogeneous $s \in S_{\bullet}$ of positive even degree.

Section 1. The classification of the Tor-Algebras.

If k is any field, then let $\mathbf{A} - \mathbf{F}^{\bigstar}$ be the DG Γ -algebras over k which are defined in Table 1. Further numerical information about (and alternate descriptions of) these algebras may be found in [17]. (Table 1 and [17] define the same algebras $S_{\bullet} = \mathbf{A}, \ldots, \mathbf{F}^{\bigstar}$ in all cases, except when char k = 2 and $S_{\bullet} = \mathbf{F}^{\bigstar}$. All of the results in [17] and almost all of the results in the present paper assume char $k \neq 2$; consequently, one may use either definition of \mathbf{F}^{\bigstar} in these places. However, the correct definition of \mathbf{F}^{\bigstar} is given in Table 1; see Example 3.8.) The following result is an extension of the main result in [17]. The new information is the observation that all of the Betti numbers of the R-module R/J are determined by the form of S_{\bullet} together with the Cohen-Macaulay type of R/J.

Theorem 1.1. Let (R, \mathfrak{M}, k) be a local ring in which 2 is a unit. Assume that every element of k has a square root in k. Let J be a grade four almost complete intersection ideal in R, and let T_{\bullet} be the graded k-algebra $\operatorname{Tor}_{\bullet}^{R}(R/J, k)$. Then there is a parameter p, q, or r which satisfies

(1.2)
$$0 \le p, \quad 2 \le q \le 3, \quad and \quad 2 \le r \le 5,$$

an algebra S_{\bullet} from the list

 $\mathbf{A}, \ \mathbf{B}[p], \ \mathbf{C}[p], \ \mathbf{C}^{(2)}, \ \mathbf{C}^{\bigstar}, \ \mathbf{D}[p], \ \mathbf{D}^{(2)}, \ \mathbf{E}[p], \ \mathbf{E}^{(q)}, \ \mathbf{F}[p], \ \mathbf{F}^{(r)}, \ \mathbf{F}^{\bigstar},$

and a positively graded vector space W such that, T_{\bullet} is isomorphic (as a graded k-algebra) to the trivial extension $S_{\bullet} \ltimes W$ of S_{\bullet} by the trivial S_{\bullet} -module W. Furthermore, W is completely determined by $\dim_k T_4$ together with the subalgebra $k[T_1]$ of T_{\bullet} . In particular, if $\dim_k T_4 = t$, then $\dim_k T_3 = \dim_k T_2 + t - 4$, where $\dim_k T_2$ is given in the following table.

$k[T_1]$	$\dim_k T_2$
$\mathbf{A} \ltimes k(-1)$	t+6
$\mathbf{B}[0]$	t+7
$\mathbf{C}[0]$	t+7
$\mathbf{D}[0]$	t+8
$\mathbf{E}[0]$	t + 9
$\mathbf{F}[0]$	t + 10

Remark. The classification of $k[T_1]$ and the chart which relates dim T_2 and dim T_4 both remain valid, even if k is not closed under the square root operation.

Proof. In light of [17], it suffices to verify the table which gives $\dim_k T_2$ in terms of t. Let S be any four dimensional subspace of T_1 . Lemma 3.9 of [18] uses a linkage argument to produce vector spaces \overline{L}_1 and \overline{L}_3 , and a linear transformation $\overline{\beta}_3 : \overline{L}_3 \to k^4$ such that

(a) $T_2 = S^2 \oplus \overline{L}_1$, (b) $T_4 = \ker \overline{\beta}_3$, (c) $\dim_k \overline{L}_1 = \dim_k \overline{L}_3$, and (d) $\dim_k S^3 = 4 - \operatorname{rank} \overline{\beta}_3$.

A quick calculation yields

$$\dim_k T_2 = \dim_k T_4 + \dim_k S^2 - \dim_k S^3 + 4.$$

Let S be the subspace (x_1, x_2, x_3, x_4) of T_1 . The following table completes the

proof.

$k[T_1]$	$\dim_k S^2$	$\dim_k S^3$	
$\mathbf{A} \ltimes k(-1)$	6	4	
$\mathbf{B}[0]$	6	3	
$\mathbf{C}[0]$	5	2	
$\mathbf{D}[0]$	6	2	
$\mathbf{E}[0]$	6	1	
$\mathbf{F}[0]$	6	0	

We conclude this section by identifying the Tor-algebras from Table 1 which correspond to hypersurface sections. The proof of Proposition 1.4 follows the proof of (3.3) and (3.4) in [4]; it does not use the classification from [17]. On the other hand, the proof of Observation 1.5 does use [17]; the chief significance of this result is that it shows that if the Tor-algebra T_{\bullet} has the form $\mathbf{C}^{\bigstar} \ltimes W$, then W must be zero.

Proposition 1.4. Let J be a grade four almost complete intersection ideal in the local ring (R, \mathfrak{M}, k) . Let $T_{\bullet} = \operatorname{Tor}_{\bullet}^{R}(R/J, k)$ and $t = \dim_{k} T_{4}$. The following statements are equivalent.

- (a) The ideal J is a hypersurface section; that is, there exists an ideal $J' \subseteq R$ and an element $a \in R$, such that a is regular on R/J' and J = (J', a).
- (b) There is a nonzero element h in T_1 such that T_{\bullet} is a free module over the subalgebra k < h >.
- (c) The algebra T_{\bullet} is isomorphic to $\mathbf{B}[t]$, $\mathbf{C}[t]$, or \mathbf{C}^{\bigstar} .

Proof. (a) \implies (c) The element *a* is regular on *R*; consequently, *J'* is a grade three almost complete intersection. Such ideals have been classified by Buchsbaum and Eisenbud [9, Proposition 5.3]. The computation of $T'_{\bullet} = \operatorname{Tor}^{R}_{\bullet}(R/J', k)$ and $T_{\bullet} = T'_{\bullet} \otimes_{k} \operatorname{Tor}^{R}_{\bullet}(R/(a), k)$ follows quickly. Indeed, it is clear that *t* is equal to $\dim_{k} T'_{3}$; thus, in the language of [8, Theorem 2.1], we have

$$T'_{\bullet} = \begin{cases} \mathbf{H}(3,2), & \text{if } t = 2, \\ \mathbf{TE}, & \text{if } t \ge 3 \text{ is odd, and} \\ \mathbf{H}(3,0) & \text{if } t \ge 4 \text{ is even}, \end{cases} \text{ and } T_{\bullet} = \begin{cases} \mathbf{C}^{\bigstar}, & \text{if } t = 2, \\ \mathbf{B}[t], & \text{if } t \ge 3 \text{ is odd, and} \\ \mathbf{C}[t], & \text{if } t \ge 4 \text{ is even.} \end{cases}$$

(c) \implies (b) It is obvious that each of the three listed algebras is a free module over the subalgebra $k < x_1 >$.

(b) \implies (a) Let ψ represent the composition $J \to J/\mathfrak{m}J \xrightarrow{\cong} T_1$, and select an element $a \in J$ such that a is a regular element of R and $\psi(a) = h$. Avramov [4] has proved that J/(a) is a grade three almost complete intersection ideal in R/(a). The structure theorem of Buchsbaum and Eisenbud [9] produces the required grade three almost complete intersection J' in R. \Box

Observation 1.5. If the notation and hypotheses of Theorem 1.1 are adopted, then the following statements are equivalent.

(a) The algebra T_{\bullet} is isomorphic to $\mathbf{C}^{\bigstar} \ltimes W$ for some trivial \mathbf{C}^{\bigstar} -module W.

The definition of the algebras $A - F^{\star}$

Each k-algebra $S_{\bullet} = \bigoplus_{i=0}^{4} S_i$ is a DG Γ -algebra with $S_0 = k$ and $d_i = \dim_k S_i$. Select bases $\{x_i\}$ for S_1 , $\{y_i\}$ for S_2 , $\{z_i\}$ for S_3 , and $\{w_i\}$ for S_4 . View S_2 as the direct sum $S'_2 \oplus S^2_1$. Every product of basis vectors which is not listed has been set equal to zero. The parameters p, q, and r satisfy (1.2). The differential in S_{\bullet} is identically zero.

S_{ullet}	d_1	d_2	d_3	d_4	$S_1 \times S_1$	$S_1 \times S_1 \times S_1$	$S_1 \times S'_2$	$S_1 \times S_3$	$S_2^{(2)}$
Α	4	6	4	0	(a)	(a')	0	0	0
$\mathbf{B}[p]$	5	p+7	2p+3	p	(b) with $\ell = p$	(b') with $\ell = 2p$	(g)	(g')	0
$\mathbf{C}[p]$	5	p+7	2p+3	p	(c) with $\ell = p$	(c') with $\ell = 2p$	(g)	(g')	0
$\mathbf{C}^{(2)}$	5	8	7	1	(c) with $\ell = 1$	(c') with $\ell = 4$	(h) with $j = 2$	(h') with $j = 2$	0
C ★	5	9	7	2	(c) with $\ell = 2$	(c') with $\ell = 4$	(i)	(i')	(i')
$\mathbf{D}[p]$	5	p+8	2p+2	p	(d) with $\ell = p$	(d') with $\ell = 2p$	(g)	(g')	0
$\mathbf{D}^{(2)}$	5	9	6	1	(d) with $\ell = 1$	(d') with $\ell = 4$	(h) with $j = 2$	(h') with $j = 2$	0
$\mathbf{E}[p]$	5	p + 9	2p+1	p	(e) with $\ell = p$	(e') with $\ell = 2p$	(g)	(g')	0
$\mathbf{E}^{(q)}$	5	10	2q+1	1	(e) with $\ell = 1$	(e') with $\ell = 2q$	(h) with $j = q$	(h') with $j = q$	0
$\mathbf{F}[p]$	5	p+10	2p	p	(f) with $\ell = p$	0	(g)	(g')	0
$\mathbf{F}^{(r)}$	5	11	2r	1	(f) with $\ell = 1$	0	(h) with $j = r$	(h') with $j = r$	0
F★	5	12	10	2	(f) with $\ell = 2$	0	(h) with $j = 5$	(h') with $j = 5$	(j)

KEY:

(a) $x_1x_2 = y_1, x_1x_3 = y_2, x_1x_4 = y_3, x_2x_3 = y_4, x_2x_4 = y_5, x_3x_4 = y_6$

(a') $x_1x_2x_3 = z_1, x_1x_2x_4 = z_2, x_1x_3x_4 = z_3, x_2x_3x_4 = z_4$

- (b) $x_1x_2 = y_{\ell+1}, x_1x_3 = y_{\ell+2}, x_1x_4 = y_{\ell+3}, x_1x_5 = y_{\ell+4}, x_2x_3 = y_{\ell+5}, x_2x_4 = y_{\ell+6}, x_3x_4 = y_{\ell+7}$
- (b') $x_1x_2x_3 = z_{\ell+1}, x_1x_2x_4 = z_{\ell+2}, x_1x_3x_4 = z_{\ell+3}$
- (c) $x_1x_2 = y_{\ell+1}, x_1x_3 = y_{\ell+2}, x_1x_4 = y_{\ell+3}, x_1x_5 = y_{\ell+4}, x_2x_3 = y_{\ell+5}, x_2x_4 = y_{\ell+6}, x_2x_5 = y_{\ell+7}$
- (c') $x_1x_2x_3 = z_{\ell+1}, x_1x_2x_4 = z_{\ell+2}, x_1x_2x_5 = z_{\ell+3}$
- (d) $x_1x_2 = y_{\ell+1}, x_1x_3 = y_{\ell+2}, x_1x_4 = y_{\ell+3}, x_1x_5 = y_{\ell+4}, x_2x_3 = y_{\ell+5}, x_2x_4 = y_{\ell+6}, x_2x_5 = y_{\ell+7}, x_3x_4 = y_{\ell+8}$
- (d') $x_1 x_2 x_3 = z_{\ell+1}, x_1 x_2 x_4 = z_{\ell+2}$
- (e) $x_1x_2 = y_{\ell+1}, x_1x_3 = y_{\ell+2}, x_1x_4 = y_{\ell+3}, x_1x_5 = y_{\ell+4}, x_2x_3 = y_{\ell+5}, x_2x_4 = y_{\ell+6}, x_2x_5 = y_{\ell+7}, x_3x_4 = y_{\ell+8}, x_3x_5 = y_{\ell+9}$

(e')
$$x_1 x_2 x_3 = z_{\ell+1}$$
,

(f)
$$x_1x_2 = y_{\ell+1}, x_1x_3 = y_{\ell+2}, x_1x_4 = y_{\ell+3}, x_1x_5 = y_{\ell+4}, x_2x_3 = y_{\ell+5}, x_2x_4 = y_{\ell+6}, x_2x_5 = y_{\ell+7}, x_3x_4 = y_{\ell+8}, x_3x_5 = y_{\ell+9}, x_4x_5 = y_{\ell+10}$$

- (g) $x_1y_i = z_i$ for $1 \le i \le p$,
- (g') $x_1 z_{p+i} = w_i$ for $1 \le i \le p$,
- (h) $x_i y_1 = z_i$ for $1 \le i \le j$,
- (h') $x_i z_{j+i} = w_1 \text{ for } 1 \le i \le j$,
- (i) $x_1y_1 = z_1, x_1y_2 = z_2, x_2y_1 = z_3, x_2y_2 = z_4$
- (i') $x_1x_2y_1 = w_1, x_1x_2y_2 = w_2,$

(j)
$$y_1y_2 = w_1, y_1^{(2)} = w_2.$$

Table 1

(b) There exist elements $a_1, a_2 \in R$ and a three generated, grade two perfect

ideal $J' \subseteq R$ such that a_1, a_2 is a regular sequence on R/J' and $J = (J', a_1, a_2)$.

Furthermore, if the above conditions hold, then W = 0.

Proof. A straightforward calculation shows that if condition (b) holds, then $T_{\bullet} = \mathbf{C}^{\bigstar}$. On the other hand, if statement (a) holds, then Table 4.13 and Lemma 4.14 in [17] show that cases two and three are not relevant; and hence, case one applies. It follows that J is equal to K:I for complete intersection ideals K and I with

$$\dim_k\left(\frac{K+\mathfrak{M}I}{\mathfrak{M}I}\right)=2.$$

It is not difficult to show (see, for example, [8, Section 3]) that J has the form of (b). \Box

Section 2. Golod $DG\Gamma$ -Algebras.

Many of the theorems in sections 3 and 5 are proved by showing that certain $DG\Gamma$ -algebras are Golod. In the present section we collect the necessary definitions and facts about Golod algebras; most of this information may be found in [3] or [8].

Notation 2.1. Let $(\mathbf{P} = \bigoplus_{i \ge 0} \mathbf{P}_i, d)$ be a DG Γ -algebra with $(\mathbf{P}_0, \mathfrak{m}, k)$ a local ring and $H_0(\mathbf{P}) = k$. Assume that \mathbf{P}_i is a finitely generated \mathbf{P}_0 -module for all *i*. Let $Z(\mathbf{P})$, $B(\mathbf{P})$, and $H(\mathbf{P})$ represent the cycles, boundaries, and homology of \mathbf{P} , respectively. Let

$$\varepsilon \colon \boldsymbol{P} \to \frac{\boldsymbol{P}}{\mathfrak{m} \oplus (\oplus_{i \ge 1} \boldsymbol{P}_i)} = k$$

be a fixed augmentation. The complex map ε (where k is viewed as a complex concentrated in degree zero) induces augmentations $\varepsilon \colon H(\mathbf{P}) \to H(k) = k$ and $\varepsilon \colon Z(\mathbf{P}) \to Z(k) = k$. Let I_{-} represent the kernel of the augmentation map; in particular, $I\mathbf{P} = \mathfrak{m} \oplus (\oplus_{i\geq 1}\mathbf{P}_i)$, $IH(\mathbf{P}) = \oplus_{i\geq 1}H_i(\mathbf{P})$, and $IZ(\mathbf{P}) = \mathfrak{m} \oplus (\oplus_{i\geq 1}Z_i(\mathbf{P}))$.

Definition 2.2. Adopt the notation of (2.1). A (possibly infinite) subset S of homogeneous elements of $IH(\mathbf{P})$ is said to admit a *trivial Massey operation* if there exists a function γ defined on the set of finite sequences of elements of S (with repetitions) taking values in $I\mathbf{P}$, subject to the following conditions.

- (1) If h is in S, then $\gamma(h)$ is a cycle in $Z(\mathbf{P})$ which represents h in $H(\mathbf{P})$.
- (2) If h_1, \ldots, h_n are elements of \mathcal{S} , then

$$d\gamma(h_1,\ldots,h_n) = \sum_{j=1}^{n-1} \overline{\gamma(h_1,\ldots,h_j)} \gamma(h_{j+1},\ldots,h_n),$$

where $\overline{a} = (-1)^{m+1} a$ for $a \in \mathbf{P}_m$.

Definition 2.3. Adopt the notation of (2.1). If every set of homogeneous elements of $IH(\mathbf{P})$ admits a trivial Massey operation, then \mathbf{P} is a *Golod* algebra.

If S_{\bullet} is a graded k-algebra, then the Poincaré series of k over S_{\bullet} is defined to be

(2.4)
$$P_{S_{\bullet}}(z) = P_{S_{\bullet}}^{k}(z) = \sum_{i=0}^{\infty} \left(\sum_{p+q=i} \dim_{k} \operatorname{Tor}_{pq}^{S_{\bullet}}(k,k) \right) z^{i}.$$

(More discussion of the bigraded module $\operatorname{Tor}^{S_{\bullet}}(k, k)$ may be found at the beginning of [2] or [15].)

Theorem 2.5. ([3, Theorem 2.3]) If the notation of (2.1) is adopted, the following statements are equivalent.

- (1) The $DG\Gamma$ -algebra \boldsymbol{P} is Golod.
- (2) The Poincaré series $P_{\mathbf{P}}(z)$ is equal to $\left(1 z \sum_{i=1}^{\infty} \dim_k H_i(\mathbf{P}) z^i\right)^{-1}$. \Box

Lemma 2.6. ([8, Lemma 5.7]) Adopt the notation of (2.1). If there is exists a P_0 -module V contained in IP with $IZ(P) \subseteq V + B(P)$ and $V^2 \subseteq dV$, then P is a Golod algebra. \Box

The next result is a modified version of Example 5.9 in [8].

Corollary 2.7. Let (S_{\bullet}, d) be a $DG\Gamma$ -algebra which satisfies the hypotheses of (2.1) with $S_0 = k$ and d identically zero. Suppose that there exist linearly independent elements x_1, \ldots, x_m in S_1 and an integer r, with $1 \le r \le m+1$, such that $S_{\bullet} = \overline{E} \ltimes L$, where

(a) $E = \bigoplus_{i=0}^{m} E_i$ is the exterior algebra $\bigwedge^{\bullet} (\bigoplus_{i=1}^{m} kx_i)$, (b) $\overline{E} = E/E_{r+1}$, (c) $L = \bigoplus_{i \ge 1} L_i$ is an \overline{E} -module, and (d) $E_r L = 0$.

Then the $DG\Gamma$ -algebra $\mathbf{P} = S_{\bullet} < X_1, \ldots, X_m; dX_i = x_i > is a Golod algebra.$

Proof. If N is a subspace of the vector space P, then let N < X > represent the subspace

(2.8)
$$N < X > = \left\{ \sum n_{\mathbf{a}} X_1^{(a_1)} \cdots X_m^{(a_m)} \mid n_{\mathbf{a}} \in N \right\}$$

of the vector space $\mathbf{P} < X_1, \ldots, X_m >$. Define V to be the subspace $(E_r \oplus L) < X >$ of **P**. The hypothesis ensures that $V^2 = 0$. If $z \in IZ(\mathbf{P})$, then z = v + u for some $v \in V$ and some $u \in (\bigoplus_{i=0}^{r-1} E_i) < X >$. Apply the differential d to the cycle z in order to see that

$$du = -dv \in \left(\overline{E} < X >\right) \cap (L < X >) = 0.$$

It follows that u is a cycle in \boldsymbol{P} . The complex $\overline{E} < X >$ of \boldsymbol{P} is a homomorphic image of the acyclic complex E < X >; therefore, $u \in d\left((\bigoplus_{i=0}^{r-2} E_i) < X >\right), IZ(\boldsymbol{P}) \subseteq V + B(\boldsymbol{P})$, and the proof is complete by Lemma 2.6. \Box

Example 2.9. Let S_{\bullet} be one of the k-algebras from Table 1 and let $W = \bigoplus_{i \geq 1} W_i$ be a trivial S_{\bullet} -module with dim_k $W_i < \infty$ for all i. If **P** is the divided polynomial algebra defined below, then the $DG\Gamma$ -algebra $\mathbf{P} \otimes_{S_{\bullet}} (S_{\bullet} \ltimes W)$ is a Golod algebra.

S_{ullet}	Р
$\mathbf{C}[p],\mathbf{C}^{(2)},\mathbf{C}^{\bigstar}$	$S_{\bullet} < X_1, X_2; d(X_i) = x_i >$
$\mathbf{A}, \mathbf{B}[p], \mathbf{D}[p], \mathbf{D}^{(2)}, \mathbf{E}[p], \mathbf{E}^{(q)}$	$S_{\bullet} < X_1, X_2, X_3; d(X_i) = x_i >$
$\mathbf{F}[p], \mathbf{F}^{(2)}, \mathbf{F}^{(3)}, \mathbf{F}^{(4)}$	$S_{\bullet} < X_1, X_2, X_3, X_4; d(X_i) = x_i >$
$\mathbf{F}^{(5)}$, or \mathbf{F}^{\bigstar} with char $k = 2$	$S_{\bullet} < X_1, X_2, X_3, X_4, X_5; d(X_i) = x_i >$
\mathbf{F}^{\bigstar} with char $k \neq 2$	$S_{\bullet} < X_1, X_2, X_3, X_4, X_5, Y_1; d(X_i) = x_i, d(Y_1) = y_1 > 0$

Proof. We first assume that $S_{\bullet} \neq \mathbf{F}^{\bigstar}$, or else that $S_{\bullet} = \mathbf{F}^{\bigstar}$ and char k = 2. Let m and r be the integers given in the following table.

	S_{ullet}	m	r
	$\mathbf{C}[p],\mathbf{C}^{(2)},\mathbf{C}^{igstarrow}$	2	3
(2.10)	$\mathbf{A}, \mathbf{B}[p], \mathbf{D}[p], \mathbf{D}^{(2)}, \mathbf{E}[p], \mathbf{E}^{(q)}$	3	3
	${f F}[p], {f F}^{(2)}, {f F}^{(3)}, {f F}^{(4)}$	4	2
	$\mathbf{F}^{(5)}$, or \mathbf{F}^{\bigstar} with char $k = 2$	5	2

For $S_{\bullet} \neq \mathbf{F}^{\bigstar}$, the result follows directly from Corollary 2.7. If $S_{\bullet} = \mathbf{F}^{\bigstar}$ and char k = 2, then Corollary 2.7 does not apply because y_1 and y_2 are in L but $y_1y_2 \neq 0$. On the other hand,

$$y_1y_2X_1^{(a_1)}X_2^{(a_2)}\cdots X_5^{(a_5)} = x_1z_6X_1^{(a_1)}X_2^{(a_2)}\cdots X_5^{(a_5)} = d\left(z_6X_1^{(a_1+1)}X_2^{(a_2)}\cdots X_5^{(a_5)}\right) \in dV.$$

A slight modification of Corollary 2.7 yields the result.

We now take S_{\bullet} to be \mathbf{F}^{\bigstar} with char $k \neq 2$. Let $\mathbf{P}' = \mathbf{P} \otimes_{S_{\bullet}} (S_{\bullet} \ltimes W)$, and let M_1, M_2 , and N be the subspaces

$$M_1 = (1, x_1, x_2, x_3, x_4, x_5, y_1),$$

$$M_2 = (1, x_1, x_2, x_3, x_4, x_5, y_1, y_3, \dots, y_{12}, z_1, \dots, z_5, w_2), \text{ and }$$

$$N = (y_2, y_3, \dots, y_{12}, z_1, \dots, z_{10}, w_1, w_2) \oplus W$$

of $S_{\bullet} \ltimes W$. Recall the notation of (2.8), and let $U = M_1 < X, Y >$ and V = N < X, Y > be subspaces of P'. Observe that $V^2 = 0$. It is clear that $V \oplus U = P'$ (as vector spaces). If $z \in IZ(P')$, then z = v + u for some $v \in V$ and some $u \in U$. Apply d to z in order to see that

$$du = -dv \in (M_2 < X, Y >) \cap ((w_1) < X, Y >) = 0.$$

It follows that u is a cycle in P'. We proceed as in the proof of Corollary 2.7. The DG-algebra

$$Q = \left(\bigwedge_{k}^{\bullet} \left(\bigoplus_{i=1}^{5} kx_{i} \right) \otimes_{k} \operatorname{Sym}_{\bullet}^{k}(ky_{1}) \right) < X, Y >$$

is known to be acyclic; see, for example, [16, Theorem 5.2]. Furthermore, the complex $M_2 < X, Y >$ is a homomorphic image of Q. We conclude that $u \in d(k < X, Y >)$ and P' is a Golod algebra by Lemma 2.6. \Box

Remarks. (a) We established Example 2.9 by identifying a subspace V of \boldsymbol{P} which contains a representative of every nonzero element of $IH(\boldsymbol{P})$. A more detailed description of the homology of \boldsymbol{P} is given in the proof of Lemma 3.2; consequently, an alternate proof of Example 2.9 may be read from Table 4.

(b) The behavior of the DG Γ -algebra \mathbf{F}^{\bigstar} depends on char k because $y_1^2 = 2y_1^{(2)} = 2w_2$. If char k = 2, then $y_1^2 = 0$. If char $k \neq 2$, then y_1^2 is part of a basis for \mathbf{F}^{\bigstar} over k.

SECTION 3. THE LIST OF POINCARÉ SERIES.

If M is a finitely generated module over a local ring A, then the Poincaré series $P_A^M(z)$ is defined at the beginning of the paper. We write $P_A(z)$ to mean $P_A^k(z)$. The Poincaré series $P_A(z)$ is not always a rational function [1]; however, Theorem 3.3 supplies a sufficient condition for this conclusion.

The problem of computing Poincaré series may sometimes be converted from the category of local rings to the category of finite dimensional algebras over a field. If S_{\bullet} is a graded k-algebra, then the Poincaré series $P_{S_{\bullet}}(z)$ is defined in (2.4). To compute the Poincaré series of codimension four almost complete intersections, we use Avramov's Theorem.

Theorem 3.1. ([2, Corollary 3.3]) Let J be a small ideal in the local ring (R, \mathfrak{M}, k) , A = R/J, and $T_{\bullet} = \operatorname{Tor}_{\bullet}^{R}(A, k)$. If the minimal resolution of A by free R-modules is a $DG\Gamma$ -algebra, then $P_{A}(z) = P_{R}(z)P_{T_{\bullet}}(z)$. \Box

Recall that an ideal J in a local ring (R, \mathfrak{M}, k) is said to be *small* if the natural map $\operatorname{Tor}^{R}_{\bullet}(k, k) \to \operatorname{Tor}^{R/J}_{\bullet}(k, k)$ is an injection. For example, if R is regular and $J \subseteq \mathfrak{M}^{2}$, then J is small; see [2, Example 3.11] or [15, Example 1.6].

Lemma 3.2. Let T_{\bullet} be a $DG\Gamma$ -algebra of the form $S_{\bullet} \ltimes W$ for some S_{\bullet} from Table 1 and some trivial S_{\bullet} -module W. Assume that $T_{\bullet} = \bigoplus_{i=0}^{4} T_i$ with $T_0 = k$, $\dim_k T_1 = 5$, $\dim_k T_4 = t$ (if $S_{\bullet} = \mathbf{C}^{\bigstar}$, then take t = 2), and $\dim_k T_2$, and $\dim_k T_3$ given in (1.3). Then the Poincaré series $P_{T_{\bullet}}(z)$ is given in Table 2.

Theorem 3.3. Let (R, \mathfrak{M}, k) be a local ring in which 2 is a unit, J be a grade four almost complete intersection ideal in R, and A = R/J. If the ideal J of R is small (for example, if R is regular and $J \subseteq \mathfrak{M}^2$), then $P_A(z) = P_R(z)P_{T_{\bullet}}(z)$, where the Poincaré series $P_{T_{\bullet}}(z)$ is given in Lemma 3.2.

Proof of Theorem 3.3. Inflate the residue field of R [12, 0_{III} 10.3.1], if necessary, in order to assume that k is closed under square roots. Theorem 1.1 (together with Observation 1.5) shows that $T_{\bullet} = \text{Tor}_{\bullet}^{R}(A, k)$ satisfies the hypotheses of Lemma 3.2; and therefore, the Poincaré series $P_{T_{\bullet}}(z)$ is given in Table 2. The minimal R-resolution of A is a DG Γ -algebra (the DG structure is exhibited in [18] and the divided powers are given by $a^{(2)} = (1/2)a^2$ for all homogeneous a of degree two); and therefore, the result follows from Theorem 3.1. \Box

S_{ullet}	$P_{T_{ullet}}^{-1}(z)$
A	$(1 - 2z - 2z^{2} + (6 - t)z^{3} - 2z^{4} - 2z^{5} + z^{6})(1 + z)^{2}$
$\mathbf{B}[p]$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} + (p - 3)z^{4} - z^{5} + z^{6})(1 + z)^{2}$
$\mathbf{C}[p]$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} + (p - 3)z^{4})(1 + z)^{2}$
$\mathbf{C}^{(2)}$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} - z^{4} - z^{5})(1 + z)^{2}$
C*	$(1 - 2z - 2z^{2} + 4z^{3} + z^{4} - 2z^{5})(1 + z)^{2} = (1 - 2z)(1 - z)^{2}(1 + z)^{4}$
$\mathbf{D}[p]$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} + (p - 4)z^{4} - z^{5} + z^{6})(1 + z)^{2}$
$\mathbf{D}^{(2)}$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} - 2z^{4} - 2z^{5} + z^{6})(1 + z)^{2}$
$\mathbf{E}[p]$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} + (p - 5)z^{4} - 2z^{5} + 2z^{6})(1 + z)^{2}$
$\mathbf{E}^{(q)}$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} + (q - 5)z^{4} - (1 + q)z^{5} + (4 - q)z^{6} + (q - 2)z^{7})(1 + z)^{2}$
$\mathbf{F}[p]$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} + (p - 6)z^{4} - 4z^{5} + 4z^{6} + z^{7} - z^{8})(1 + z)^{2}$
$\mathbf{F}^{(2)}$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} - 4z^{4} - 5z^{5} + 4z^{6} + z^{7} - z^{8})(1 + z)^{2}$
$\mathbf{F}^{(3)}$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} - 3z^{4} - 6z^{5} + 3z^{6} + 2z^{7} - z^{8})(1 + z)^{2}$
$\mathbf{F}^{(4)}$	$(1 - 2z - 2z^{2} + (6 - t)z^{3} - 2z^{4} - 7z^{5} + z^{6} + 4z^{7} - z^{9})(1 + z)^{2}$
$ \mathbf{F}^{(5)} \\ \mathbf{F}^{\bigstar}, \text{ char } k = 2 $	$(1 - 2z - 2z^{2} + (6 - t)z^{3} - z^{4} - 8z^{5} - 2z^{6} + 7z^{7} + 3z^{8} - 4z^{9} - z^{10} + z^{11})(1 + z)^{2}$
\mathbf{F}^{\bigstar} , char $k \neq 2$	$\frac{(1-2z-2z^2+(7-t)z^3-3z^4-9z^5+(3-t)z^6+2z^7-z^8)(1+z)^2}{1+z^3}$

The list of Poincaré series for Lemma 3.2

Table 2

Proof of Lemma 3.2. Our calculation of $P_{T_{\bullet}}(z)$ is similar to the calculation of Table 1 in [4]; some of the steps may also be found in section one of [15]. We are given $T_{\bullet} = S_{\bullet} \ltimes W$ with W a trivial S_{\bullet} -module. It follows that

(3.4)
$$P_{T_{\bullet}}^{-1}(z) = P_{S_{\bullet}}^{-1}(z) - z \left(\sum_{i=1}^{4} \dim_{k} W_{i} z^{i} \right).$$

Read the dimension of each W_i from (1.3) in order to obtain Table 3. The Poincaré series $P_{\mathbf{A}}^{-1}(z) = (1-z^2)^4 - z^6$ may be read from Example 1.1 and Theorem 1.4 in [15]. The decompositions

$$\mathbf{B}[p] = \left(\frac{k[x_2, x_3, x_4]}{(x_2 x_3 x_4)} \ltimes \left(k(-1) \oplus k(-2)^p \oplus k(-3)^p\right)\right) \otimes_k k[x_1],$$

$$\mathbf{C}[p] = \left(\left(\frac{k[x_3, x_4, x_5]}{(x_3, x_4, x_5)^2} \otimes_k k[x_2]\right) \ltimes \left(k(-2)^p \oplus k(-3)^p\right)\right) \otimes_k k[x_1], \text{ and}$$

$$\mathbf{C}^{\bigstar} = \left(\frac{k[x_3, x_4, x_5, y_1, y_2]}{(x_3, x_4, x_5, y_1, y_2)^2}\right) \otimes_k k[x_1, x_2]$$

have been observed in [17]. It follows that

$$P_{\mathbf{B}[p]}^{-1}(z) = \left((1-z^2)^3 - z^5 - z\left(z+pz^2+pz^3\right)\right)(1-z^2),$$

$$P_{\mathbf{C}[p]}^{-1}(z) = \left((1-3z^2)(1-z^2) - z(pz^2+pz^3)\right)(1-z^2), \text{ and }$$

$$P_{\mathbf{C}^{\star}}^{-1}(z) = \left(1-z(3z+2z^2)\right)(1-z^2)^2.$$

S_{\bullet}	$\sum_{i=1}^4 \dim_k W_i z^i$
Α	$z + tz^2(1+z)^2 - 2z^3$
$\mathbf{B}[p]$	$(t-p)z^2(1+z)^2$
$\mathbf{C}[p]$	$(t-p)z^2(1+z)^2$
$\mathbf{C}^{(2)}$	$(t-1)z^2(1+z)^2 - 2z^3$
C*	0
$\mathbf{D}[p]$	$(t-p)z^2(1+z)^2+2z^3$
$\mathbf{D}^{(2)}$	$(t-1)z^2(1+z)^2$
$\mathbf{E}[p]$	$(t-p)z^2(1+z)^2 + 4z^3$
$\mathbf{E}^{(q)}$	$(t-1)z^2(1+z)^2 + (6-2q)z^3$
$\mathbf{F}[p]$	$(t-p)z^2(1+z)^2 + 6z^3$
$\mathbf{F}^{(r)}$	$(t-1)z^2(1+z)^2 + (8-2r)z^3$
F★	$(t-2)z^2(1+z)^2$

The trivial S_{\bullet} -module W

Table 3	3
---------	---

For any other choice of S_{\bullet} , let P be the Golod DG Γ -algebra defined in Example 2.9, and let $F_{P}(z)$ be the formal power series

$$F_{\boldsymbol{P}}(z) = \sum_{i=1}^{\infty} \dim_k H_i(\boldsymbol{P}) z^i.$$

Theorem 2.5 shows that $P_{\boldsymbol{P}}^{-1}(z) = 1 - zF_{\boldsymbol{P}}(z)$; consequently, (3.5)

$$P_{S_{\bullet}}^{-1}(z) = \begin{cases} (1-z^2)^m (1-zF_{\mathbf{P}}(z)), & \text{for } S_{\bullet} \neq \mathbf{F}^{\bigstar}, \text{ or } S_{\bullet} = \mathbf{F}^{\bigstar} \text{ with } \operatorname{char} k = 2, \\ \frac{(1-z^2)^5}{(1+z^3)} (1-zF_{\mathbf{P}}(z)), & \text{for } S_{\bullet} = \mathbf{F}^{\bigstar} \text{ with } \operatorname{char} k \neq 2, \end{cases}$$

where m is given in (2.10).

In order to compute the homology of \boldsymbol{P} , we decompose the subcomplex

(3.6)
$$C_n: \quad \boldsymbol{P}_{2n+2} \xrightarrow{d_{2n+2}} \boldsymbol{P}_{2n+1} \xrightarrow{d_{2n+1}} \boldsymbol{P}_{2n} \xrightarrow{d_{2n}} \boldsymbol{P}_{2n-1},$$

for $n \geq 0$, into a direct sum of smaller complexes. The following notation is in effect throughout this discussion. Let $X^{(q)}$ represent the subspace of the vector space \boldsymbol{P} which consists of all k-linear combinations of the divided power monomials $X_1^{(a_1)} \cdots X_m^{(a_m)}$, where $\sum a_i = q$. If $s_1, \ldots, s_p \in S_{\bullet}$, then let (s_1, \ldots, s_p) be the subspace of \boldsymbol{P} spanned by all k-linear combinations of s_1, \ldots, s_p . If A and B are subspaces of \boldsymbol{P} , then AB is the subspace of \boldsymbol{P} spanned by $\{ab \mid a \in A \text{ and } b \in B\}$.

Now we consider $S_{\bullet} = \mathbf{C}^{(2)}$. Let *M* be the subspace $(x_1, x_2)(x_3, x_4, x_5)$ of S_{\bullet} .

The complex C_n is the direct sum of the following complexes.

The complex $C_{n,1}$ is exact because the subalgebra $k[x_1, x_2] < X_1, X_2 > \text{ of } \boldsymbol{P}$ is acyclic. If n = 0, then $C_{n,2}$ contributes $[x_3]$, $[x_4]$, and $[x_5]$ to $H_1(\boldsymbol{P})$. If $n \ge 1$, then $C_{n,2}$ is isomorphic to the direct sum of three copies of $C_{n-1,1}$ and is therefore exact. If n = 1, then $C_{n,3}$ contributes $[y_1]$ to $H_2(\boldsymbol{P})$. If $n \ge 2$, then $C_{n,3}$ is exact. We see that $C_{n,i}$ is exact for i is equal to 4, 7, 8, or 9. If $n \ge 1$, then the homology at $(x_1, x_2)y_1X^{(n-1)}$ in $C_{n,5}$ has dimension 2n - (n+1) and the homology at $(z_3, z_4)X^{(n-1)}$ in $C_{n,6}$ has dimension 2n - (n-1). Thus,

$$\dim_k H_{2n+1}(\mathbf{P}) = \begin{cases} 2n, & \text{if } 1 \le n, \\ 3, & \text{if } 0 = n, \end{cases} \text{ and } \dim_k H_{2n}(\mathbf{P}) = \begin{cases} 0, & \text{if } 2 \le n, \text{ and} \\ 1, & \text{if } 1 = n. \end{cases}$$

The equality

(3.7)
$$\sum_{n=a-b}^{\infty} \binom{n+b}{a} z^{2n} = \frac{z^{2(a-b)}}{(1-z^2)^{a+1}},$$

for integers a and b with $a \ge 0$, is well known. It follows that

$$F_{\mathbf{P}}(z) = 3z + z^2 + \sum_{n=1}^{\infty} 2nz^{2n+1} = 3z + z^2 + \frac{2z^3}{(1-z^2)^2}.$$

An analogous decomposition of (3.6) can be made for each of the other choices of S_{\bullet} . In Table 4 we record where the homology of P lives without explicitly recording the decomposition of C_n . The details have been omitted, except, as an example, we have recorded three of the summands of C_n in the most complicated case; that is, when $S_{\bullet} = \mathbf{F}^{\bigstar}$ and char $k \neq 2$. It is easy to see that the map d_{2n+1} is surjective in the complex

$$C_{n,1}: \quad 0 \xrightarrow{d_{2n+2}} \begin{array}{c} (z_6, \dots, z_{10}) X^{(n-1)} \\ \bigoplus \\ (y_2)(Y_1) X^{(n-2)} \end{array} \xrightarrow{d_{2n+1}} (w_1) X^{(n-2)} \xrightarrow{d_{2n}} 0;$$

consequently, all of the homology in this complex is concentrated in position 2n+1. The complex

$$C_{n,2}: \quad 0 \xrightarrow{d_{2n+2}} (Y_1)X^{(n-1)} \xrightarrow{d_{2n+1}} (y_1)X^{(n-1)} \xrightarrow{d_{2n+1}} (x_1, \dots, x_5)(Y_1)X^{(n-2)} \xrightarrow{d_{2n}} (x_1, \dots, x_5)(y_1)X^{(n-2)} \xrightarrow{d_{2n}} (x_1, \dots, x_5)^2(Y_1)X^{(n-3)}$$

is exact. The complex

$$C_{n,3}: \bigoplus_{(x_1,\ldots,x_5)(Y_1)X^{(n-1)}} \xrightarrow{d_{2n+2}} \bigoplus_{(x_1,\ldots,x_5)(Y_1)X^{(n-1)}} \xrightarrow{d_{2n+1}} 0 \xrightarrow{d_{2n}} 0$$

is the tail end of the exact complex $C_{n+1,2}$; consequently, it is easy to compute the homology at position 2n + 1.

A routine calculation using Table 4 and (3.7) produces the power series $F_{\mathbf{P}}(z)$; the result is recorded in Table 5. The proof is completed by combining Table 5 with (3.5), (3.4), and Table 3. \Box

Example 3.8. Let (R, \mathfrak{M}, k) be a regular local ring. Suppose that $Y_{1\times 5}$ and $X_{5\times 5}$ are matrices with entries in \mathfrak{M} , with X alternating. Assume that the ideal $J = I_1(YX)$ has grade four. Let A = R/J and $T_{\bullet} = \operatorname{Tor}_{\bullet}^R(A, k)$. One can compute that $T_{\bullet} = \mathbf{F}^{\bigstar}$ for any field k. If char $k \neq 2$, then Theorem 3.3 shows that

$$P_A(z) = \frac{(1+z^3)P_R(z)}{(1-2z-2z^2+5z^3-3z^4-9z^5+z^6+2z^7-z^8)(1+z)^2}$$

On the other hand, the techniques of the present paper can be used to calculate the Poincaré series $P_A(z)$ even if char k = 2. One can show that the minimal *R*-resolution of *A* is a DG Γ -algebra; consequently, Theorem 3.1 yields that $P_A(z) = P_R(z)P_{T_{\bullet}}(z)$. The Poincaré series $P_{T_{\bullet}}(z)$ is given in Table 2; and therefore,

$$P_A(z) = \frac{P_R(z)}{(1 - 2z - 2z^2 + 4z^3 - z^4 - 8z^5 - 2z^6 + 7z^7 + 3z^8 - 4z^9 - z^{10} + z^{11})(1 + z)^2}$$

Section 4. The Poincaré series of modules.

In Theorem 3.3 we proved that the Poincaré series $P_A^k(z)$ is a rational function whenever (A, \mathfrak{m}, k) is a codimension four almost complete intersection in which two is a unit. In the present section, we apply Theorem 4.1, which is a new result due to Avramov, in order to conclude that $P_A^M(z)$ is a rational function for all finitely generated A-modules M.

Theorem 4.1 refers to data from two Tate resolutions. If (A, \mathfrak{m}, k) is a local ring, then the Tate resolution X of k over A is the DG Γ -algebra which is the union of the following collection of DG Γ -subalgebras

$$A = X(0) \subseteq X(1) \subseteq X(2) \subseteq \dots$$

Each X(n) has the form

$$X(n) = X(n-1) < Y_1, \dots, Y_{e_n}; d(Y_i) = z_i >,$$

where each Y_i is a divided power variable of degree n and $z_1, \ldots z_{e_n}$ are cycles in X(n-1) which represent a minimal generating set for the kernel of $H_{n-1}(X(n-1)) \rightarrow H_{n-1}(k)$. (In the above discussion we have viewed A and k as graded algebras

The homology in P

S_{ullet}	the homology in \boldsymbol{P} at	has dimension	$H_i(\boldsymbol{P})$
$\mathbf{D}[p]$	$(x_4, x_5) X^{(n)} \ (z_1, \dots, z_p) X^{(n-1)}$	2 if $n = 0$, 1 if $n \ge 1$ $p\binom{n+1}{2} - p\binom{n}{2}$	2n + 1
	$(x_1x_4, x_1x_5, x_2x_4, x_2x_5, x_3x_4)X^{(n-1)}$ $(y_1, \dots, y_p)X^{(n-1)}$	$5\binom{n+1}{2} - \binom{n}{2} - 2\binom{n+2}{2} + 1$ $p\binom{n+1}{2} - p\binom{n}{2}$	2n
$\mathbf{D}^{(2)}$	$(x_4, x_5)X^{(n)}$ $(x_1, x_2)(y_1)X^{(n-1)}$ $(z_3, z_4)X^{(n-1)}$	2 if $n = 0$, 1 if $n \ge 1$ $2\binom{n+1}{2} - \binom{n+2}{2} + 1$ $2\binom{n+1}{2} - \binom{n}{2}$	2n + 1
	$(x_1x_4, x_1x_5, x_2x_4, x_2x_5, x_3x_4)X^{(n-1)}$ $(y_1)X^{(n-1)}$	$5\binom{n+1}{2} - \binom{n}{2} - 2\binom{n+2}{2} + 1$ 1	2n
$\mathbf{E}[p]$	$(x_4, x_5)X^{(n)}$ $(z_1, \dots, z_p)X^{(n-1)}$	2 if $n = 0$, 0 if $n \ge 1$ $p\binom{n+1}{2} - p\binom{n}{2}$	2n + 1
	$(x_1, x_2, x_3)(x_4, x_5)X^{(n-1)}$ $(y_1, \dots, y_p)X^{(n-1)}$	$6\binom{n+1}{2} - 2\binom{n+2}{2}$ $p\binom{n+1}{2} - p\binom{n}{2}$	2n
$\mathbf{E}^{(q)}$	$(x_4, x_5)X^{(n)}$ $(x_1, \dots, x_q)(y_1)X^{(n-1)}$ $(z_{q+1}, \dots, z_{2q})X^{(n-1)}$	2 if $n = 0$, 0 if $n \ge 1$ 0 if $n = 0$, $q\binom{n+1}{2} - \binom{n+2}{2} + (3-q)$ if $n \ge 1$ $q\binom{n+1}{2} - \binom{n}{2}$	2n + 1
	$(x_1, x_2, x_3)(x_4, x_5)X^{(n-1)}$ $(y_1)X^{(n-1)}$	$6\binom{n+1}{2} - 2\binom{n+2}{2}$ 1 if $n = 1$, $3 - q$ if $n \ge 2$	2n
$\mathbf{F}[p]$	$(x_5)X^{(n)}$ $(z_1,\ldots,z_p)X^{(n-1)}$	1 if $n = 0$, 0 if $n \ge 1$ $p\binom{n+2}{3} - p\binom{n+1}{3}$	2n + 1
	$(x_1, x_2, x_3, x_4)^2 X^{(n-1)}$ (x_1, x_2, x_3, x_4)(x_5) X^{(n-1)} (y_1, \dots, y_p) X^{(n-1)}	$6\binom{n+2}{3} - 4\binom{n+3}{3} + \binom{n+4}{3}$ $4\binom{n+2}{3} - \binom{n+3}{3}$ $p\binom{n+2}{3} - p\binom{n+1}{3}$	2n
$\mathbf{F}^{(2)}$	$(x_5)X^{(n)}$ $(x_1, x_2)(y_1)X^{(n-1)}$ $(z_3, z_4)X^{(n-1)}$	1 if $n = 0$, 0 if $n \ge 1$ $2\binom{n+2}{3} - \binom{n+3}{3} + n + 1$ $2\binom{n+2}{3} - \binom{n+1}{3}$	2n + 1
	$(x_1, x_2, x_3, x_4)^2 X^{(n-1)}$ $(x_1, x_2, x_3, x_4)(x_5) X^{(n-1)}$ $(y_1) X^{(n-1)}$	$6\binom{n+2}{3} - 4\binom{n+3}{3} + \binom{n+4}{3} \\ 4\binom{n+2}{3} - \binom{n+3}{3} \\ n$	2n

KEY: The second row of this table should be read, "If $S_{\bullet} = \mathbf{D}[p]$, then the homology

concentrated in degree zero.) In particular, $e_1 = \dim_k \mathfrak{m}/\mathfrak{m}^2$. Furthermore, if A = R/I where (R, \mathfrak{M}, k) is regular local and $I \subseteq \mathfrak{M}^2$, then $e_2 = \dim_k \operatorname{Tor}_1^R(A, k)$; in other words, $e_2 = \dim_k(I/\mathfrak{M}I)$. If T_{\bullet} is the algebra $\operatorname{Tor}_{\bullet}^R(A, k)$, then the Tate resolution \widetilde{X} of k over T_{\bullet} is obtained in a similar manner; see [16] for details. Indeed, \widetilde{X} is the union of the DG Γ -subalgebras

$$T_{\bullet} = \widetilde{X}(0) = \widetilde{X}(1) \subseteq \widetilde{X}(2) \subseteq \widetilde{X}(3) \subseteq \dots ,$$

where each $\widetilde{X}(n)$ has the form

$$\widetilde{X}(n) = \widetilde{X}(n-1) < Y_1, \dots, Y_{\widetilde{e}_n} >,$$

and each Y_i is a divided power variable of degree n. If the minimal resolution of A by free R-modules is a DG Γ -algebra, then Theorem 3.1 shows that $\tilde{e}_n = e_n$ for $2 \leq n$.

Theorem 4.1. ([6]) Let (R, \mathfrak{M}, k) be a regular local ring, $I \subseteq \mathfrak{M}^2$ be an ideal of R, A be the quotient R/I, T_{\bullet} be the algebra $\operatorname{Tor}_{\bullet}^{R}(A, k)$, and \widetilde{X} be the minimal Tate resolution of k over T_{\bullet} . Assume that the minimal resolution of A by free R-modules is a $DG\Gamma$ -algebra and that there exists an integer n and divided power variables Y_1, \ldots, Y_s of degree n such that the $DG\Gamma$ -subalgebra $\widetilde{X}(n-1) < Y_1, \ldots, Y_s > of \widetilde{X}$ is Golod. Then the Poincaré series $P_A^M(z)$ is a rational function for all finitely generated A-modules M. In fact, there is a polynomial $\operatorname{Den}_A(z) \in \mathbb{Z}[z]$ with

(a)
$$P_{A}(z) = \frac{(1+z)^{e_{1}}(1+z^{3})^{e_{3}}\cdots(1+z^{m-2})^{e_{m-2}}(1+z^{m})^{r}}{\text{Den}_{A}(z)},$$
where
$$\begin{cases} m = n \text{ and } r = s, & \text{if } n \text{ is odd,} \\ m = n-1 \text{ and } r = e_{n-1}, & \text{if } n \text{ is even,} \end{cases}$$
(b)
$$P_{A}(z) \in \mathbb{Z}^{n-1} \text{ and } r = e_{n-1}, \text{ if } n \text{ is even,} \end{cases}$$

(b) $\operatorname{Den}_A(z)P_A^M(z) \in \mathbb{Z}[z]$ for all finitely generated A-modules M. \Box

Corollary 4.2. Let (R, \mathfrak{M}, k) be a regular local ring, and (A, \mathfrak{m}, k) be the quotient R/J, where J is an almost complete intersection ideal of grade at most four. If two is a unit in A, then there is a polynomial $\text{Den}_A(z) \in \mathbb{Z}[z]$ such that $\text{Den}_A(z)P_A^M(z) \in \mathbb{Z}[z]$ for all finitely generated A-modules M.

Proof. The Betti numbers of M are unchanged under a faithfully flat extension of A; consequently, we may assume that k is closed under square roots. We may replace R by R/(x) for some $x \in \mathfrak{M} \setminus \mathfrak{M}^2$, if necessary, in order to assume that $J \subseteq \mathfrak{M}^2$. Let g represent the grade of J, $T_{\bullet} = \operatorname{Tor}_{\bullet}^R(A, k)$, and $t = \dim_k(T_g)$. If $g \leq 3$, then the result is contained in [8]. For the sake of completeness, we recall that $\operatorname{Den}_A(z)$ is defined by

$$\operatorname{Den}_{A}(z) = \begin{cases} (1+z)^{2}(1-2z), & \text{if } g = 2, \\ (1+z)^{3}(1-z)(1-2z), & \text{if } g = 3 \text{ and } t = 2, \\ (1+z)(1-z-3z^{2}-(t-3)z^{3}-z^{5}), & \text{if } g = 3 \text{ and } t \ge 3 \text{ is odd, and} \\ (1+z)(1-z-3z^{2}-(t-3)z^{3}), & \text{if } g = 3 \text{ and } t \ge 4 \text{ is even.} \end{cases}$$

The	homo	logy	in	\boldsymbol{P}
Tue	nomo	lugy	111	1

S_{ullet}	the homology in \boldsymbol{P} at	has dimension	$H_i(\boldsymbol{P})$
$\mathbf{F}^{(3)}$	$(x_5)X^{(n)}$	1 if $n = 0$, 0 if $n \ge 1$	2n + 1
	$(x_1, x_2, x_3)(y_1)X^{(n-1)}$	$3\binom{n+2}{3} - \binom{n+3}{3} + 1$	
	$(z_4, z_5, z_6)X^{(n-1)}$	$3\binom{n+2}{3}-\binom{n+1}{3}$	
	$(x_1, x_2, x_3, x_4)^2 X^{(n-1)}$	$6\binom{n+2}{3} - 4\binom{n+3}{3} + \binom{n+4}{3}$	2n
	$(x_1, x_2, x_3, x_4)(x_5)X^{(n-1)}$	$4\binom{n+2}{3} - \binom{n+3}{3}$	
	$(y_1)X^{(n-1)}$	1	
$\mathbf{F}^{(4)}$	$(x_5)X^{(n)}$	$1 \text{ if } n = 0, 0 \text{ if } n \ge 1$	2n+1
	$(x_1, x_2, x_3, x_4)(y_1)X^{(n-1)}$	0 if $n = 0$, $4\binom{n+2}{3} - \binom{n+3}{3}$ if $n \ge 1$	
	$(z_5, z_6, z_7, z_8)X^{(n-1)}$	$4\binom{n+2}{3} - \binom{n+1}{3}$	
	$(x_1, x_2, x_3, x_4)^2 X^{(n-1)}$	$6\binom{n+2}{3} - 4\binom{n+3}{3} + \binom{n+4}{3}$	2n
	$(x_1, x_2, x_3, x_4)(x_5)X^{(n-1)}$	$4\binom{n+2}{3} - \binom{n+3}{3}$	
	$(y_1)X^{(n-1)}$	1 if $n = 1$, 0 if $n \ge 2$	
$\mathbf{F}^{(5)}$	$(x)(y_1)X^{(n-1)}$	0 if $n = 0, 5\binom{n+3}{4} - \binom{n+4}{4}$ if $n \ge 1$	2n + 1
	$(z_6, \dots, z_{10})X^{(n-1)}$	$5\binom{n+3}{4} - \binom{n+2}{4}$	
	$(x)^2 X^{(n-1)}$	$10\binom{n+3}{4} - 5\binom{n+4}{4} + \binom{n+5}{4}$	2n
	$(y_1)X^{(n-1)}$	1 if $n = 1$, 0 if $n \ge 2$	
F★	$(x)(y_1)X^{(n-1)}$	0 if $n = 0, 5\binom{n+3}{4} - \binom{n+4}{4}$ if $n \ge 1$	2n + 1
$\operatorname{char} k = 2$	$(z_6,\ldots,z_{10})X^{(n-1)}$	$5\binom{n+3}{4} - \binom{n+2}{4}$	
	$(x)^2 X^{(n-1)}$	$10\binom{n+3}{4} - 5\binom{n+4}{4} + \binom{n+5}{4}$	2n
	$(y_1)X^{(n-1)}$	1 if $n = 1$, 0 if $n \ge 2$	
	$(y_2)X^{(n-1)}$	$\binom{n+3}{4}$	
	$(w_2)X^{(n-2)}$	$\binom{n+2}{4}$	
F★	$(x)(y_1)X^{(n-1)} \oplus (x)^2(Y_1)X^{(n-2)}$	$10\binom{n+2}{4}$	2n+1
$\operatorname{char} k \neq 2$	$(z_6,\ldots,z_{10})X^{(n-1)}\oplus (y_2)(Y_1)X^{(n-2)}$	$5\binom{n+3}{4}$	
	$(y_1^2)(Y_1)X^{(n-3)}$	$\binom{n+1}{4}$	
	$(x)^2 X^{(n-1)}$	$10\binom{n+3}{4} - 5\binom{n+4}{4} + \binom{n+5}{4}$	2n
	$(y_1^2)X^{(n-2)} \oplus (x)(y_1)(Y_1)X^{(n-3)}$	$5\binom{n+1}{4}$	
	$(z_6,\ldots,z_{10})(Y_1)X^{(n-3)}$	$5\binom{n+1}{4} - \binom{n}{4}$	
	$(y_2)X^{(n-1)}$	$\binom{n+3}{4}$	

KEY: The second row of this table should be read, "If $S_{\bullet} = \mathbf{F}^{(3)}$, then the homology in \mathbf{P} at $(x_1, x_2, x_3)(y_1)X^{(n-1)}$ has dimension $3\binom{n+2}{3} - \binom{n+3}{3} + 1$; further-

S_{ullet}	$F_{P}(z)$
$\mathbf{D}[p]$	$2 + z + \frac{z}{1 - z} + \frac{-2 + (p + 5)z^2 + pz^3 - (p + 1)z^4 - pz^5}{(1 - z^2)^3}$
$\mathbf{D}^{(2)}$	$2 + z + \frac{2z}{1 - z} + \frac{-2 - z + 5z^2 + 4z^3 - z^4 - z^5}{(1 - z^2)^3}$
$\mathbf{E}[p]$	$2 + 2z + \frac{-2 + (p+6)z^2 + pz^3 - pz^4 - pz^5}{(1-z^2)^3}$
$\mathbf{E}^{(q)}$	$2 + 3z + z^{2} + \frac{(3-q)z^{3}}{1-z} + \frac{-2 - z + 6z^{2} + 2qz^{3} - z^{5}}{(1-z^{2})^{3}}$
$\mathbf{F}[p]$	$-z^{-2} + 1 + z + \frac{z^{-2} - 5 + (10 + p)z^2 + pz^3 - pz^4 - pz^5}{(1 - z^2)^4}$
$\mathbf{F}^{(r)}$ $2 \le r \le 4$	$-z^{-2} + 1 + z + \frac{z + z^2}{(1 - z^2)^{4 - r}} + \frac{z^{-2} - 5 - z + 10z^2 + 2rz^3 - z^5}{(1 - z^2)^4}$
$\mathbf{F}^{(5)}$	$-z^{-2} + z + z^{2} + \frac{z^{-2} - 5 - z + 10z^{2} + 10z^{3} - z^{5}}{(1 - z^{2})^{5}}$
\mathbf{F}^{\bigstar} char $k = 2$	$-z^{-2} + z + z^{2} + \frac{z^{-2} - 5 - z + 11z^{2} + 10z^{3} + z^{4} - z^{5}}{(1 - z^{2})^{5}}$
\mathbf{F}^{\bigstar} char $k \neq 2$	$-z^{-2} + \frac{z^{-2} - 5 + 11z^2 + 5z^3 + 10z^5 + 10z^6 + z^7 - z^8}{(1 - z^2)^5}$

The formal power series $F_{\mathbf{P}}(z)$

Table 5

Now we consider the case g = 4. Write $T_{\bullet} = S_{\bullet} \ltimes W$, where W is a trivial S_{\bullet} -module and S_{\bullet} is one of the algebras from Table 1. Let P be the DG Γ -defined in Example 2.9. The existence of $\text{Den}_A(z)$ is guaranteed by Theorem 4.1 because $P \otimes_{S_{\bullet}} T_{\bullet}$ is a Golod algebra. Furthermore, Theorem 4.1 also shows that $\text{Den}_A(z)$ is the same as the polynomial labeled $P_{T_{\bullet}}^{-1}(z)$ in the statement of Theorem 3.3, unless $S_{\bullet} = \mathbf{F}^{\bigstar}$. In the latter case

$$Den_A(z) = (1 - 2z - 2z^2 + (7 - t)z^3 - 3z^4 - 9z^5 + (3 - t)z^6 + 2z^7 - z^8)(1 + z)^2. \quad \Box$$

The following application of Corollary 4.2 is proved by appealing to [14, Theorem 4.15]. Recall our convention that an almost complete intersection is never a complete intersection.

Corollary 4.3. Let (R, \mathfrak{M}, k) be a regular local ring, and (A, \mathfrak{m}, k) be the quotient R/J, where J is an almost complete intersection ideal of grade at most four. If the field of rational numbers is contained in R, then there are infinitely many integers $i \geq 1$ for which the cotangent module $T_i(A/R, A)$ is not zero. \Box

SECTION 5. GROWTH OF BETTI NUMBERS.

If M is a finitely generated module over a local ring $(A,\mathfrak{m},k),$ then the $i^{\rm th}$ Betti number of M is equal to

$$b_i = \dim_k \operatorname{Tor}_i^A(M,k)$$

The concept of the complexity of a module, which was introduced in [4, (1.1)] and [5, (3.1)], plays a crucial role in our study of Betti number growth.

Definition 5.1. Let M be a finitely generated module over a local ring (A, \mathfrak{m}, k) . The *complexity*, $\operatorname{cx}_A M$, of M is equal to d, if d-1 is the smallest degree of a polynomial $f(n) \in \mathbb{Z}[n]$ for which $b_n \leq f(n)$ for all sufficiently large n. If no such d exists, then M has infinite complexity. (The zero polynomial is assigned degree -1.)

Observe that the definition of complexity is designed so that $cx_A M = 0$ if and only if $pd_A M < \infty$; and $cx_A M = 1$ if and only if the projective dimension of M is infinite, but the Betti numbers of M are bounded.

Corollary 5.2. Let (R, \mathfrak{M}, k) be a regular local ring, and (A, \mathfrak{m}, k) be the quotient R/J, where J is an almost complete intersection ideal of grade at most four. Assume that two is a unit in R. Let M be a finitely generated A-module of infinite projective dimension, and let b_i represent the *i*th Betti number of M. Then one of the following cases occurs.

- (1) The Betti numbers of M grow exponentially; that is, there are real numbers α and β with $1 < \alpha \leq \beta$ and $\alpha^n \leq \sum_{i=0}^n b_i \leq \beta^n$ for all large n.
- (2) The Betti numbers of M grow linearly. In this case, there are positive integers a and b with $(a/2)n b \le b_n \le (a/2)n + b$ for all large n.
- (3) The Betti numbers of M are bounded. In this case, the minimal A-resolution F of M is eventually periodic of period at most two. In fact, F is eventually given by a matrix factorization; that is, there exists integers b and r, a local ring (B, n), an element x ∈ n, and b × b matrices φ and ψ, with entries in B, such that x is regular on B, B/(x) ≅ A, φψ = xI_b = ψφ, and the tail F>r of F is given by

$$\ldots \to A^b \xrightarrow{\overline{\psi}} A^b \xrightarrow{\overline{\phi}} A^b \xrightarrow{\overline{\psi}} A^b \xrightarrow{\overline{\phi}} A^b$$

where \neg represents $_ \otimes_B A$.

Proof. As in the proof of Corollary 4.2, we may assume that k is closed under square roots and that $J \subseteq \mathfrak{M}^2$. Let $g = \operatorname{grade} J$, $T_{\bullet} = \operatorname{Tor}(A, k)$, and $t = \dim_k T_q$.

If $\operatorname{cx}_A M = \infty$, then [4, Proposition 2.3] shows that the Betti numbers of M grow exponentially as described in (1). Henceforth, we assume $\operatorname{cx}_A M < \infty$. Apply Proposition 2.4 in [4] to see that $\operatorname{cx}_A M$ is the order of the pole $P_A^M(z)$ at z = 1. In the proof of Corollary 4.2 we identified a polynomial $\operatorname{Den}_A(z)$ with the property that $\operatorname{Den}_A(z)P_A^M(z) \in \mathbb{Z}[z]$. It follows that $\operatorname{cx}_A M$ is no more than the multiplicity of z = 1 as a root of $\operatorname{Den}_A(z)$. The value of $\operatorname{Den}_A(1)$ may be quickly computed. (Remember that $t \geq 2$ because A is not Gorenstein, and $t \geq p$ because of the way the algebras $\mathbf{B}[p], \ldots, \mathbf{F}[p]$ are defined.) Our calculations are summarized in the following table. (The algebra $\mathbf{H}(3, 2)$ was introduced in the proof of Proposition 1.4.)

T_{ullet}	$\operatorname{cx}_A M$
C*	$0 \le \operatorname{cx}_A M \le 2$
$\mathbf{B}[t]$ or $\mathbf{C}[t]$ or $\mathbf{H}(3,2)$	$0 \le \operatorname{cx}_A M \le 1$
anything else	$0 = \operatorname{cx}_A M$

The hypothesis $\operatorname{pd}_A M = \infty$ ensures that $\operatorname{cx}_A(M) \neq 0$; and therefore, T_{\bullet} is equal to one of $\mathbf{B}[t]$, $\mathbf{C}[t]$, \mathbf{C}^{\bigstar} , or $\mathbf{H}(3,2)$. Apply Proposition 1.4, Observation 1.5, and [4, Proposition 3.4], in order to produce an almost complete intersection (B, \mathbf{n}, k) and a regular sequence \mathbf{a} such that $B/(\mathbf{a}) = A$ and $\operatorname{Den}_B(1) \neq 0$. (The ring B has the form R/J' for some almost complete intersection ideal J' with grade $J' < \operatorname{grade} J$. The length of \mathbf{a} is one, unless $T_{\bullet} = \mathbf{C}^{\bigstar}$, in which case \mathbf{a} has length two.) The complexity of M, as a B-module, is finite by (A.11) of [4]; and therefore, we may repeat the above argument in order to conclude that $\operatorname{pd}_B M < \infty$. It follows that, in the language of [5], the A-module M has finite virtual projective dimension. The rest of the conclusion may now be read from Theorems 4.1 and 4.4 of [5]. \Box

Part (3) of the above result shows that the Eisenbud conjecture holds for the rings A under consideration. Gasharov and Peeva [11] have found counterexamples to the conjecture.

SECTION 6. GOLOD HOMOMORPHISMS.

Assume, for the time being, that A satisfies one of the hypotheses (a) – (d) from the beginning of the paper. It is shown in [8] that the Poincaré series $P_A^M(z)$ is rational for all finitely generated A-modules. The proof consists of applying Levin's Theorem (see [8, Proposition 5.18]) to a Golod homomorphism $C \to A$ for some complete intersection C. Now, take A as described in Corollary 4.2. In most cases (see Corollary 6.2 for details) one can obtain the conclusion of Corollary 4.2 by using the techniques of [8] in place of Theorem 4.1. However, if $\operatorname{Tor}_{\bullet}^R(A, k) = \mathbf{F}^{\bigstar}$ and char $k \neq 2$, then, in Proposition 6.5, we show that there does not exist a Golod map from a complete intersection onto A. In this case, we must use Theorem 4.1 in our proof of Corollary 4.2.

Definition 6.1. Let $f: (C, \mathfrak{n}, k) \to (A, \mathfrak{m}, k)$ be a surjection of local rings. Assume that A is not a hyperplane section of C. (In other words, A is not of the form C/(x) for some regular element $x \in \mathfrak{n} \setminus \mathfrak{n}^2$.) Let X be the Tate resolution of k over C. If $A \otimes_C X$ is a Golod algebra, then f is a Golod homomorphism.

Corollary 6.2. Let (R, \mathfrak{M}, k) be a regular local ring in which 2 is a unit, J be a grade four almost complete intersection ideal in R, and A = R/J. Suppose that $\operatorname{Tor}_{\bullet}^{R}(A, k)$ has the form $S_{\bullet} \ltimes W$ for some S_{\bullet} from Table 1 and some trivial S_{\bullet} -module W. (This hypothesis is satisfied if k is closed under square roots.) If $S_{\bullet} \neq \mathbf{F}^{(5)}$ or \mathbf{F}^{\bigstar} , then there exists an R-sequence a_1, \ldots, a_m in J (where m is given in (2.10)), such that the natural map $R/(a_1, \ldots, a_m) \twoheadrightarrow A$ is a Golod homomorphism.

Proof. The result follows from [8, Theorem 5.17] because of Example 2.9 and [18]. \Box

Lemma 6.3. Let (R, \mathfrak{M}, k) be a regular local ring, J be an ideal of R which is contained in \mathfrak{M}^2 , and a_1, \ldots, a_m be an R-sequence which is contained in J. If the natural map $R/(a_1, \ldots, a_m) \twoheadrightarrow R/J$ is Golod, then a_1, \ldots, a_m begins a minimal generating set for J.

Proof. Let A = R/J and $C = R/(\mathbf{a})$, where **a** represents a_1, \ldots, a_m . If M is a module, then $\mu(M)$ is the minimal number of generators of M. Recall that

$$P_A(z) = \frac{(1+z)^{e_1}(1+z^3)^{e_3}(1+z^5)^{e_5}\cdots}{(1-z^2)^{e_2}(1-z^4)^{e_4}(1-z^6)^{e_6}\cdots} ,$$

where $e_1 = \dim R$ and $e_2 = \mu(J)$. (The deviations e_i were also considered at the beginning of section 4.) It follows that $P_A(z)P_R^{-1}(z) = (1 + \mu(J)z^2 + ...)$. In a similar way, we see that $P_C(z)P_R^{-1}(z) = (1 + mz^2 + ...)$. The map $C \to A$ is Golod; thus [8, (5.1)] ensures that

(6.4)
$$P_A(z) = P_C(z) \left(1 - z \left(P_C^A(z) - 1\right)\right)^{-1}.$$

The minimal resolution of A over C begins $\cdots \to C^{\ell} \to C \to A \to 0$, where $\ell = \mu(J/(\mathbf{a}))$. Multiply both sides of (6.4) by $P_R^{-1}(z)$ in order to obtain

$$(1 + \mu(J)z^2 + \cdots) = P_A(z)P_R^{-1}(z) = (1 + mz^2 + \cdots)(1 + \ell z^2 + \cdots)$$
$$= (1 + (m + \ell)z^2 + \cdots).$$

It follows that $\mu(J) = m + \ell$; and the proof is complete. \Box

Proposition 6.5. Let (R, \mathfrak{M}, k) be a regular local ring, $J \subseteq \mathfrak{M}^2$ be an ideal in R, (A, \mathfrak{m}, k) be the quotient R/J, $T_{\bullet} = \operatorname{Tor}_{\bullet}^R(A, k)$, and $n = \dim_k T_1$. Suppose that $\dim_k T_1^2 = \binom{n}{2}$. If **a** is an R-sequence in J with the property that the natural map $C = R/(\mathbf{a}) \twoheadrightarrow A$ is a Golod map, then $T_2^2 \subseteq T_1T_3$.

Proof. Fix a minimal generating set x_1, \ldots, x_e for \mathfrak{M} . Let (\mathbb{K}, d) be the Koszul complex $R < X_1, \ldots, X_e; d(X_i) = x_i >$ and let $\overline{\mathbb{K}} = A \otimes_R \mathbb{K}$. We view T_{\bullet} as the homology of $\overline{\mathbb{K}}$. Eventually, we will prove that

(6.6)
$$Z_2(\overline{\mathbb{K}})Z_2(\overline{\mathbb{K}}) \subseteq Z_1(\overline{\mathbb{K}})Z_3(\overline{\mathbb{K}}) + B_4(\overline{\mathbb{K}}).$$

If $y \in \mathbb{K}$, then we write \overline{y} to mean $1 \otimes y \in \overline{\mathbb{K}}$.

According to Lemma 6.3, we may select elements y_1, \ldots, y_n in \mathbb{K}_1 such that $d(y_1), \ldots, d(y_m)$ is a minimal generating set for (**a**) and $d(y_1), \ldots, d(y_m), \ldots, d(y_n)$ is a minimal generating set for J. We have chosen the elements y_i so that each \overline{y}_i is in $Z_1(\overline{\mathbb{K}})$ and so that the corresponding classes $[\overline{y}_1], \ldots, [\overline{y}_n]$ in homology form a basis for $H_1(\overline{\mathbb{K}})$. The hypothesis $\dim_k T_1^2 = \binom{n}{2}$ guarantees that the elements

(6.7)
$$[\overline{y}_i \overline{y}_j]$$
 such that $1 \le i < j \le n$

are linearly independent in $H_2(\overline{\mathbb{K}})$.

The ring C is a complete intersection; consequently,

$$(C \otimes_R \mathbb{K}) < Y_1, \ldots, Y_m; d(Y_i) = 1 \otimes y_i >$$

is the Tate resolution of k over C. The hypothesis $C \rightarrow A$ is Golod ensures that

$$\mathbb{L} = \overline{\mathbb{K}} \langle Y_1, \dots, Y_m; d(Y_i) = \overline{y}_i \rangle$$

is a Golod algebra.

Let z_1 and z_2 be arbitrary elements of $Z_2(\overline{\mathbb{K}})$. The fact that \mathbb{L} is a Golod algebra implies, among other things, that $z_1 z_2$ is a boundary in \mathbb{L} ; that is, there exists $\alpha \in \overline{\mathbb{K}}_5$, $\alpha_i \in \overline{\mathbb{K}}_3$ for $1 \leq i \leq m$, and $\alpha_{ij} \in \overline{\mathbb{K}}_1$ for $1 \leq i \leq j \leq m$ such that

$$z_1 z_2 = d \left(\alpha + \sum_{i=1}^m \alpha_i Y_i + \sum_{1 \le i < j \le m} \alpha_{ij} Y_i Y_j + \sum_{i=1}^m \alpha_{ii} Y_i^{(2)} \right).$$

When this equation is expanded, we obtain $\alpha_{ij} \in Z_1(\overline{\mathbb{K}})$ for $1 \leq i \leq j \leq m$,

(6.8)
$$z_1 z_2 = d(\alpha) - \sum_{i=1}^m \alpha_i \overline{y}_i$$
, and

(6.9)
$$d(\alpha_i) = \sum_{j=1}^{i-1} \alpha_{ji} \overline{y}_j + \alpha_{ii} \overline{y}_i + \sum_{j=i+1}^m \alpha_{ij} \overline{y}_j \quad \text{for } 1 \le i \le m.$$

A basis for $H_1(\overline{\mathbb{K}})$ has already been identified; thus, there exists $\beta_{ij} \in \overline{\mathbb{K}}_2$ and $a_{ijk} \in A$ for $1 \leq i \leq j \leq m$ and $1 \leq k \leq n$, such that

(6.10)
$$\alpha_{ij} = \sum_{k=1}^{n} a_{ijk} \overline{y}_k + d(\beta_{ij})$$

for $1 \leq i \leq j \leq m$. If $1 \leq i < j \leq m$, then define $\alpha_{ji} = \alpha_{ij}$, $a_{jik} = a_{ijk}$ and $\beta_{ji} = \beta_{ij}$. Furthermore, if $m + 1 \leq i \leq n$ or $m + 1 \leq j \leq n$, then define $a_{jik} = a_{ijk} = 0$. It follows that (6.10) holds for $1 \leq i, j \leq m$ and (6.9) can be rewritten as

(6.11)
$$d(\alpha_i) = \sum_{j=1}^m \alpha_{ij} \overline{y}_j = \sum_{j=1}^m \left(\sum_{k=1}^n a_{ijk} \overline{y}_k + d(\beta_{ij}) \right) \overline{y}_j$$
$$= \sum_{1 \le k < j \le n} (a_{ijk} - a_{ikj}) \overline{y}_k \overline{y}_j + d\left(\sum_{j=1}^m \beta_{ij} \overline{y}_j \right).$$

Use (6.7) to see that $a_{ijk} - a_{ikj} \in \mathfrak{m}$ for $1 \leq i, j, k \leq n$. It is not difficult to find $\gamma_{ijk} \in \overline{\mathbb{K}}_1$ such that

$$d(\gamma_{ijk}) = a_{ijk} - a_{ikj}, \quad \gamma_{ijk} + \gamma_{ikj} = 0, \quad \gamma_{ijk} + \gamma_{jki} + \gamma_{kij} = 0 \quad \text{for } 1 \le i, j, k \le n, \text{ and}$$
$$\gamma_{ijk} = 0 \quad \text{for } m+1 \le i \le n \text{ and } 1 \le j, k \le n.$$

(For example, if $1 \leq i < j < k \leq n$, then select γ_{ijk} and γ_{jki} with $d(\gamma_{ijk}) = a_{ijk} - a_{ikj}$ and $d(\gamma_{jki}) = a_{jki} - a_{jik}$. Define $\gamma_{kij} = -\gamma_{ijk} - \gamma_{jki}$, $\gamma_{ikj} = -\gamma_{ijk}$, and

 $\gamma_{jik} = -\gamma_{jki}, \ \gamma_{kji} = -\gamma_{kij}$. This procedure must be modified slightly if there are repetitions among the indices i, j, k.) It now follows from (6.11) that

$$d(\alpha_i) = d\left(\sum_{1 \le k < j \le n} \gamma_{ijk} \overline{y}_k \overline{y}_j + \sum_{j=1}^m \beta_{ij} \overline{y}_j\right);$$

thus, for $1 \leq i \leq m$, there exists $w_i \in Z_3(\overline{\mathbb{K}})$ such that

(6.12)
$$\alpha_i = \sum_{1 \le k < j \le n} \gamma_{ijk} \overline{y}_k \overline{y}_j + \sum_{j=1}^m \beta_{ij} \overline{y}_j + w_i.$$

When (6.12) is combined with (6.8), we obtain

$$z_1 z_2 = d(\alpha) - \sum_{i=1}^m w_i \overline{y}_i.$$

Line (6.6) has been established; and the proof is complete. \Box

References

- 1. D. Anick, A counterexample to a conjecture of Serre, Annals of Math. 115 (1982), 1–33.
- 2. L. Avramov, Small homomorphisms of local rings, J. Alg. 50 (1978), 400-453.
- L. Avramov, Golod homomorphisms, Algebra, Algebraic Topology and their Interactions, Lecture Notes in Mathematics 1183, Springer Verlag, Berlin Heidelberg New York, 1986, pp. 59–78.
- L. Avramov, Homological asymptotics of modules over local rings, Commutative Algebra, Mathematical Sciences Research Institute Publications 15, Springer Verlag, Berlin Heidelberg New York, 1989, pp. 33–62.
- 5. L. Avramov, Modules of finite virtual projective dimension, Invent. math. 96 (1989), 71-101.
- L. Avramov, Local rings over which all modules have rational Poincaré series, J. Pure Appl. Algebra 91 (1994), 29–48.
- 7. L. Avramov and Y. Félix, Espaces de Golod, Astérisque 191 (1990), 29-34.
- L. Avramov, A. Kustin, and M. Miller, Poincaré series of modules over local rings of small embedding codepth or small linking number, J. Alg. 118 (1988), 162–204.
- 9. D. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 (1977), 447-485.
- 10. D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, Trans. Amer. Math. Soc. 260 (1980), 35–64.
- V. Gasharov and I. Peeva, Boundedness versus periodicity over commutative local rings, Trans. Amer. Math. Soc. **320** (1990), 569–580.
- A. Grothendieck, *Eléments de Géométrie Algébrique III*, IHES Publications Math. No. 11, Paris, 1961.
- T. Gulliksen and G. Levin, *Homology of local rings*, Queen's papers in pure and applied mathematics 20, Queen's University, Kingston, Ontario, 1969.
- J. Herzog, Homological properties of the module of differentials, Atas da 6^a escola de álgebra Recife, Coleção Atas. Soc. Brasileria de Mat. 14, Rio de Janeiro, 1981, pp. 33–64.
- C. Jacobsson, A. Kustin, and M. Miller, The Poincaré series of a codimension four Gorenstein ring is rational, J. Pure Appl. Algebra 38 (1985), 255–275.
- T. Józefiak, Tate resolutions for commutative graded algebras over a local ring, Fund. Math. 74 (1972), 209-231.

- 23
- 17. A. Kustin, Classification of the Tor-algebras of codimension four almost complete intersections, Trans. Amer. Math. Soc. **339** (1993), 61–85.
- A. Kustin, The minimal resolution of a codimension four almost complete intersection is a DG-algebra, J. Alg. 168 (1994), 271–295.
- 19. S. Palmer, Algebra structures on resolutions of rings defined by grade four almost complete intersections, Ph.D. thesis, University of South Carolina, 1990.
- S. Palmer, Algebra structures on resolutions of rings defined by grade four almost complete intersections, J. Alg. 159 (1993), 1–46.

MATHEMATICS DEPARTMENT, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208 *E-mail address*: n410123 at univscvm (bitnet)

Mathematics Department, Southwest Missouri State University, Springfield, MO65804

E-mail address: smp343f at smsvma (bitnet)