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Abstract. Let (R, m, k) be a commutative noetherian local ring in which two is
a unit. We prove that if J is a five generated grade four perfect ideal in R, then

the minimal resolution of R/J by free R−modules is an associative, differential,
graded−commutative algebra. This result extends and completes the work in [16]
and [17], where the conclusion is shown to hold provided certain technical conditions
on Tor are satisfied. The multiplication on the resolution of R/J is constructed

using appropriate higher order multiplication on the resolution of R/I, where I is a
Gorenstein ideal which is linked to J .

For the time being, let A be a quotient of a regular local ring (R,m, k), and let
F be the minimal resolution of A by free R−modules. If F has the structure of a
differential graded algebra (DG−algebra), then many interesting and difficult ques-
tions about A can be translated into questions about the algebra T• = TorR

• (A, k).
The algebra T•, although graded-commutative instead of commutative, is in many
ways simpler than the original ring A. This philosophy has lead to some striking
theorems in the case that A has small codimension or small linking number. If any
one of the following conditions hold:

(a) codimA ≤ 3, or
(b) codimA = 4 and A is Gorenstein, or
(c) A is one link from a complete intersection, or
(d) A is two links from a complete intersection and A is Gorenstein,

then it is shown in [2] and [3] that all of the following conclusions hold:

(1) The Poincaré series PM
A (t) =

∑∞
i=0 dimk TorA

i (k,M) ti is a rational function
for all finitely generated A−modules M .

(2) If R contains the field of rational numbers, then the Herzog Conjecture [7]
holds for the ring A. That is, the cotangent cohomology Ti(A/R) vanishes
for all large i if and only if A is a complete intersection.

(3) The Eisenbud Conjecture [5] holds for the ring A. That is, if M is a finitely
generated A−module whose Betti numbers are bounded, then the minimal
resolution of M eventually becomes periodic of period at most two.
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order multiplication, linkage, perfect ideal, Poincaré algebra, Poincaré series, tight double linkage,
Tor−algebra.
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In each case, (a) – (d), there are three steps to the process:
(i) one proves that the resolution F is a DG−algebra;
(ii) one classifies the Tor−algebras TorR

• (A, k); and
(iii) one completes the proof of (1) – (3).

Eventually, we hope to extend the list (a) – (d) to include the hypothesis
(e) A is an almost complete intersection of codimension four in which two is a

unit.
Indeed, step (ii) is carried out in [9]; step (i) was begun in [16] and [17], and is
completed in the present paper; and we anticipate that step (iii) will be contained
in a future paper.

Roughly speaking, there are two ways to put a DG−structure on F. One ap-
proach is to record an explicit multiplication table for F and show that it satisfies
all of the relevant axioms. This approach works if A is:

• a complete intersection, (in this case, the resolution F is an exterior algebra);
• one link from a complete intersection [3];
• two links from a complete intersection and is Gorenstein [12];
• a codimension four Gorenstein ring defined by the (n− 1)× (n− 1) minors

of an n× n matrix [6];
• a determinantal ring defined by the maximal minors of a matrix [18]; or
• a Gorenstein ring defined by a Huneke−Ulrich deviation two ideal [19].

The other approach is to observe that F always has a multiplication which satisfies
all of the DG axioms except it is associative only up to homotopy. If F is sufficiently
short, then this multiplication might be modified in order to become associative “on
the nose.” This is the approach of:

• [4] for codimA ≤ 3;
• [10] for codimA = 4, char k 6= 2, and A Gorenstein;
• [8] for codimA = 4, char k = 2, and A Gorenstein; and
• [16, 17] for a codimension four almost complete intersection A in which two

is a unit, provided hypothesis (W) holds for the defining ideal of A, see
(3.3).

The main theorem in this paper is Theorem 3.13, which states that if J is a
grade four almost complete intersection ideal in a local ring R and two is a unit in
R, then the minimal resolution of R/J is a DG−algebra. The outline of our proof
is quite simple: a DG−resolution M of R/J has been introduced in [16] and [17], we
find a DG−ideal I of M for which M/I is the minimal resolution of R/J ; however,
a significant amount of effort is involved in finding the ideal I. The resolution M is
built using higher order multiplication on the minimal resolution L of R/I, where I
is a Gorenstein ideal which is linked to J . In order to find the DG−ideal I we must
modify the multiplicative structure of L. We do this by building a non-minimal
resolution F of R/I which exhibits the proper multiplicative structure. Our final
step is to carry the multiplicative structure of F to L.

In section 1 we explain what is meant by higher order multiplication. Section
2 is a review of the DG−resolution M. Section 3 consists of two parts. First, we
use the classification of TorR

• (R/J, k) from [9] to catalogue those almost complete
intersection ideals J which are not covered in [17]. Then, for the ideals J which are



ALGEBRA RESOLUTIONS OF ALMOST COMPLETE INTERSECTIONS 3

not covered in [17], we identify our candidate for the DG−ideal I. The candidate for
I is introduced in Lemma 3.10, which also shows how we would like the multiplica-
tion on L to behave. Theorem 3.11 states that there is a multiplication on L which
exhibits the correct behavior. Theorem 3.11 is probably an interesting result in its
own right. It shows that there is a multiplication on the minimal resolution of R/I
which satisfies some of the same equations as the multiplication in TorR• (R/I, k),
where I is a grade four Gorenstein ideal. We suspect that a much stronger result
along these lines is true and we hope that this potential stronger result, if it exists,
has as nice an application as the use of Theorem 3.11 in the proof of Theorem 3.13.

All of sections 4, 5, and 6 are devoted to the proof of Theorem 3.11. The
aforementioned resolution F of R/I is built using the “big from small construction”
of [11]. This construction and the related notion of tight double linkage are reviewed
in section 4. In section 5 we pass higher order multiplications across the big from
small construction in order to endow F with the multiplication that we wish L to
have. The easiest part of the argument occurs in section 6, where we carry the
multiplicative structure on F down to the minimal resolution L.

In this paper “ring” means commutative noetherian ring with one. If M is a
module over a ring R, then we write “F is an R−resolution of M” to mean that F
is an acyclic complex of finitely generated, free R−modules with H0(F) = M . If
I is an ideal in the local ring (R,m, k), then we will often consider the map ψ : I →
TorR

1 (R/I, k) which is the following composition of natural homomorphisms:

(0.1) I −→ I/mI
∼=−→ TorR

1 (R/I, k).

In other words, if (F, f) is an R−resolution of R/I and x is an element of I, then
ψ(x) is equal to the class of e in H1(F⊗Rk) for any e ∈ F1 with f1(e) = x ∈ F0 = R.

The grade of a proper ideal I in a ring R is the length of the longest regular
sequence on R in I. The ideal I of R is called perfect if the grade of I is equal
to the projective dimension of the R−module R/I. A grade g ideal I is called a
complete intersection if it can be generated by g generators. Complete intersection
ideals are necessarily perfect. The grade g ideal I is called an almost complete
intersection if it is a perfect ideal which is not a complete intersection and which
can be generated by g+ 1 generators. The grade g ideal I is called Gorenstein if it
is perfect and Extg

R(R/I,R) ∼= R/I.
We always take “DG−algebra” to mean associative DG−algebra. Elementary

results about DG−algebras and linkage may be found in [10] and [4]. In particular,
we use the symmetry property of linkage quite often. Let K $ I be grade g perfect
ideals in a commutative noetherian ring R. If K is a complete intersection and
J = K : I, then J is a grade g perfect ideal and I = K : J .

Section 1. Higher order multiplication in Poincaré algebras.

In this section R is a fixed commutative noetherian ring.

Definition 1.1. If F : 0 → Fg
fg−→ . . .

f2−→ F1
f1−→ F0 is a DG−algebra over R, then

F is a length g Poincaré DG−algebra over R if
(a) F0 = R,
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(b) there is an isomorphism [ ] : Fg → R,
(c) the map Fi ⊗Fg−i → R, which is given by ui ⊗ug−i 7→ [uiug−i], is a perfect

pairing for all i, and
(d) if charR = 2 and g = 2n, then x2 = 0 for every x ∈ Fn.

Note: Condition (d) is irrelevant to this paper. It has been included in order to
keep our definition consistent with [1, Definition 9.3].

There are many well known examples of Poincaré DG−algebras. If F is a
Koszul complex, then exterior multiplication gives F the structure of a Poincaré
DG−algebra. It is shown in [10] and [8] that if I is a grade four Gorenstein ideal
in a local ring R, then the minimal R−resolution of R/I is a Poincaré DG−algebra
over R. If I is a grade g Gorenstein ideal in a local ring (R,m, k), then Avramov
[1, Example 9.4] has shown that TorR

• (R/I, k) is a Poincaré DG−algebra over k of
length g.

Notation 1.2. For each length four Poincaré DG−algebra F over R, we define
maps

Γ: F3 ⊗
5∧
F1 → R and Φ: S2F2 ⊗

4∧
F1 → R by

Γ(v3 ⊗ v1 ∧ v′
1 ∧ v′′

1 ∧ v′′′
1 ∧ v′′′′

1 ) = + [v3v1][v′1v′′
1 v′′′

1 v′′′′
1 ] − [v3v′

1][v1v′′
1 v′′′

1 v′′′′
1 ] + [v3v′′

1 ][v1v′
1v′′′

1 v′′′′
1 ]

− [v3v′′′
1 ][v1v′

1v′′
1 v′′′′

1 ] + [v3v′′′′
1 ][v1v′

1v′′
1 v′′′

1 ], and

Φ(v2 ⊗ v′
2 ⊗ v1 ∧ v′

1 ∧ v′′
1 ∧ v′′′

1 ) = − [v2v1v′
1][v′2v′′

1 v′′′
1 ] + [v2v1v′′

1 ][v′2v′
1v′′′

1 ] − [v2v1v′′′
1 ][v′2v′

1v′′
1 ]

− [v2v′′
1 v′′′

1 ][v′2v1v′
1] + [v2v′

1v′′′
1 ][v′2v1v′′

1 ] − [v2v′
1v′′

1 ][v′2v1v′′′
1 ]

+ [v2v′
2][v1v′

1v′′
1 v′′′

1 ]

for all vi ∈ Fi.

Definition 1.3. Let (F, f) be a Poincaré DG−algebra of length four over the ring
R, and let Γ and Φ be the maps which are defined in (1.2).

(a) The map ϕ : F2 ⊗
∧5

F1 → R is a complete higher order multiplication on F
if it satisfies

(i) ϕ(f3(v3) ⊗ V (5)) = Γ(v3 ⊗ V (5)), and
(ii) ϕ(v2 ⊗ f2(v′2) ∧ V (4)) + ϕ(v′2 ⊗ f2(v2) ∧ V (4)) = Φ(v2 ⊗ v′2 ⊗ V (4))

for all vi ∈ Fi and V (i) ∈ ∧i
F1.

(b) Let A be a four−generated submodule of F1. The map ϕ′ : F2 ⊗ F1 → R is
a partial higher order multiplication on F, with respect to A, if it satisfies

(i) ϕ′(f3(v3) ⊗ v1) = Γ(v3 ⊗ v1 ∧A),
(ii) ϕ′(v2 ⊗ f2(v′2)) + ϕ′(v′2 ⊗ f2(v2)) = Φ(v2 ⊗ v′2 ⊗ A), and
(iii) ϕ′(v2 ⊗ a) = 0,
for all vi ∈ Fi and a ∈ A, where A ∈ ∧4

F1 is a fixed generator of the image
of
∧4

A → ∧4
F1.

Note: In the above definition we say that ϕ′ is associated to A. If rA is another
generator of im (

∧4
A → ∧4

F1), for some element r ∈ R, then rϕ′ is a partial
higher order multiplication which is associated to rA.
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Example 1.4. If F is a Koszul complex of length four, then the zero map from
F2 ⊗ ∧5

F1 to R is a complete higher order multiplication on F because Γ and Φ
are both identically zero.

Observation 1.5. Adopt the notation of Definition 1.3. If ϕ : F2 ⊗
∧5

F1 → R is
a complete higher order multiplication on F and A = (a1, a

′
1, a

′′
1 , a

′′′
1 ) is a submodule

of F1, then the map ϕ′ : F2 ⊗ F1 → R, which is defined by

ϕ′(v2 ⊗ v1) = ϕ(v2 ⊗ v1 ∧ a1 ∧ a′1 ∧ a′′1 ∧ a′′′1 ) for all vi ∈ Fi,

is a partial higher order multiplication on F with respect to M . �

The following result, which establishes the existence of Poincaré algebras with
higher order multiplication, plays a crucial role in the present paper. The only
proof [16, 17] which is known at present is quite brutal.

Theorem 1.6. (Palmer) Let I be a grade four Gorenstein ideal in a local ring R.
If two is a unit in R, then the minimal R−resolution of R/I admits a complete
higher order multiplication. �

Section 2. The algebra resolution M of R/J.

Throughout this section J is a grade four almost complete intersection ideal in
the local ring (R,m, k). A DG−algebra resolution M of R/J was introduced in
[16]. The resolution M is, in general, not the minimal resolution of R/J ; however,
we prove in section 3 that it is possible to choose M in such a way that M/I is the
minimal R−resolution of R/J for some DG−ideal I in M.

Our description of M is taken from [9]. Let K be a grade four complete inter-
section ideal with K ⊆ J and µ(J/K) = 1. (We use µ(M) to mean the minimal
number of generators of the R−module M .) The ideal I = K : J is known to be a
grade four Gorenstein ideal. It is shown in [10] and [8] (the results in these refer-
ences hold for Gorenstein ideals in arbitrary local rings) that the minimal resolution
L of R/I is a Poincaré DG−algebra. Let K be a Koszul complex which is the mini-
mal resolution of R/K and let α• : K → L be a map of DG−algebras which extends
the identity map α0 : R → R. A routine mapping cone argument establishes the
following result.

Proposition 2.1. Let J be a grade four almost complete intersection in the local
ring (R,m, k) and let K be a grade four complete intersection ideal with K ⊆ J
and µ(J/K) = 1. Let I = K : J, (L, `) be the minimal resolution of R/I, (K, k)
be the minimal resolution of R/K, and α• : K → L be a map of DG−algebras. If
βi : Li → Ki is the map defined by

[βi(vi)u4−i] = [viα4−i(u4−i)]

for all uj ∈ Kj and all vi ∈ Li, then

M : 0 −→M4
m4−−→M3

m3−−→M2
m2−−→M1

m1−−→M0
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is a resolution of R/J, whereM0 = R, M1 = K1⊕L0, M2 = K2⊕L1, M3 = K3⊕L2,
M4 = L3, m1 = [ k1 β0 ],

m2 =
[
k2 −β1

0 `1

]
, m3 =

[
k3 β2

0 `2

]
, and m4 =

[−β3

`3

]
. �

The following result is Proposition 2.5 in both [16] and [17]. The main result in
these two papers (that M is a DG−algebra provided two is a unit in R) is proved
by combining Theorem 1.6 and Lemma 2.2.

Lemma 2.2. Adopt the notation and hypotheses of Proposition 2.1. If two is a unit
in R and L admits a complete higher order multiplication, then M is a DG−algebra.
�

At a crucial step (Lemma 3.10) we will be forced to use a partial higher order mul-
tiplication on L (rather than a complete higher order multiplication); consequently,
we will appeal to Lemma 2.3 in place of Lemma 2.2. It is clear from Observation 1.5
that Lemma 2.3 implies Lemma 2.2; unfortunately, it is necessary prove Lemma 2.3
from scratch. The proof is long and tedious; however it is straightforward and very
similar to the proof of Lemma 2.2. We will sketch its outline and omit most details.

Lemma 2.3. Adopt the notation and hypotheses of Proposition 2.1. If two is a
unit in R and L admits a partial higher order multiplication with respect to the
submodule α1(K1) of L1, then M is a DG−algebra.

Sketch of proof. Let A = α1(K1), h ∈ L4 and η ∈ ∧4
K1 = K4 satisfy [h] = [η] = 1,

A be the generator
(∧4

α1

)
(η) of the image of

∧4
A → ∧4

F1, and ϕ′ : L2⊗L1 → R

be a partial higher order multiplication with respect to A which is associated to A.
If maps p : L1 → L2 and q : L2 → L3 are defined by

[v2p(v1)] = ϕ′(v2 ⊗ v1) = [v1q(v2)],

then the following multiplication gives M the structure of a DG−algebra:

M1 ⊗M1 →M2 :
[
u1

v0

] [
u′1
v′0

]
=
[

u1u
′
1

v′0α1(u1) − v0α1(u′1)

]

M1 ⊗M2 →M3 :
[
u1

v0

] [
u2

v1

]
=
[

u1u2

v0α2(u2) + α1(u1)v1 + v0p(v1)

]

M1 ⊗M3 →M4 :
[
u1

v0

] [
u3

v2

]
= −[u1u3]`4(h) − v0α3(u3) + α1(u1)v2 − v0q(v2)

M2 ⊗M2 →M4 :
[
u2

v1

] [
u′2
v′1

]
= −[u2u

′
2]`4(h) + α2(u2)v′1 + v1α2(u′2) + v1p(v′1) + v′1p(v1)

for all ui ∈ Ki and vi ∈ Li.
One must verify associativity and the differential property

(2.4) mi+j(xixj) = mi(xi)xj + (−1)iximj(xj)
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for all xk ∈Mk. The following formulas are used in these verifications:
(1) βi+j(viαj(uj)) = (βivi)uj

(2) a1p(v1) = q(a1v1)
(3) q(a1a

′
1) = 0

(4) p(v1)p(v′1) = 0
(5) β0(1)v1 − α1β1(v1) = `2p(v1)
(6) β0(1)v2 − α2β2(v2) = p`2(v2) − `3q(v2)
(7) β0(1)v3 − α3β3(v3) + q`3(v3) = 0
(8) v2α1β1(v1) − v1α2β2(v2) = v1p`2(v2) + `2(v2)p(v1) − `1(v1)q(v2)
(9) [u4]β3`4(h) = k4(u4)

for all a1 ∈ A, ui ∈ Ki, and vi ∈ Li.
Formula (1) is an immediate consequence of the definition of βi. To prove (2),

first observe that axioms (ii) and (iii) in Definition 1.3 yield

0 = 2[a1v1p(`2(a1v1))] = 2(`1a1)[a1v1p(v1)]

for all a1 ∈ A and v1 ∈ L1. The ideal `1(A) = K is generated by regular elements
of R; consequently, we divide by two and conclude that

(2.5) a1v1p(v1) = 0 for all a1 ∈ A and v1 ∈ L1.

Apply (2.5) to the element v1+v′1 of L1 in order to see that a1(v′1p(v1)+v1p(v
′
1)) = 0

for all a1 ∈ A and v1, v
′
1 ∈ L1. Formula (2) now holds, and (3) follows from (2).

Since two is a unit, we prove (4) by showing that p(v1)p(v1) = 0 for all v1 ∈ L1. Let
a1 be an element of A with `1(a1) a regular element of R. The differential property
of L yields

0 = `5(a1p(v1)p(v1)) = `1(a1)p(v1)p(v1) + 2a1`2(p(v1))p(v1).

Axiom (i) shows that `2(p(v1)) ∈ (A, v1). Use formulas (3) and (2.5) to see that
the final term in the most recent equation is zero.

Recall that η is the element of K4 with [η] = 1. Let ε1, . . . , ε4 be a basis for K1

with ε1 ∧ . . . ∧ ε4 = η. The definition of βi yields

β0(1) = + [α4(ε1ε2ε3ε4)]

β1(v1) = + [v1α3(ε2ε3ε4)]ε1 − [v1α3(ε1ε3ε4)]ε2 + [v1α3(ε1ε2ε4)]ε3 − [v1α3(ε1ε2ε3)]ε4

β2(v2) = + [v2α2(ε3ε4)]ε1ε2 − [v2α2(ε2ε4)]ε1ε3 + [v2α2(ε2ε3)]ε1ε4

+ [v2α2(ε1ε2)]ε3ε4 − [v2α2(ε1ε3)]ε2ε4 + [v2α2(ε1ε4)]ε2ε3

β3(v3) = + [v3α1(ε4)]ε1ε2ε3 − [v3α1(ε3)]ε1ε2ε4 + [v3α1(ε2)]ε1ε3ε4 − [v3α1(ε1)]ε2ε3ε4

β4(v4) = + [v4]ε1ε2ε3ε4

for all vi ∈ Li. Use the differential property in L, together with axiom (i) of
Definition 1.3 to see that

[v3`2p(v1)] = [`3(v3)p(v1)] = Γ (v3 ⊗ v1 ∧ α1(ε1) ∧ α1(ε2) ∧ α1(ε3) ∧ α1(ε4))

= [v3 (β0(1)v1 − α1β1(v1))] ;
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hence, (5) is established. In a similar manner, we see that[
v′
2 (p`2(v2) − `3q(v2))

]
= [v′

2p`2(v2) + v2p`2(v′
2)] = Φ

(
v2 ⊗ v′

2 ⊗ α1(ε1) ∧ α1(ε2) ∧ α1(ε3) ∧ α1(ε4)
)

=
[
v′
2 (β0(1)v2 − α2β2v2)

]
;

thus, (6) holds. Formula (7) follows from (5) because

[v1 (β0(1)v3 − α3β3(v3) + q`3(v3))] = [(β0(1)v1 − α1β1(v1) − `2p(v1)) v3] = 0.

Apply (6) to see that the right side of (8) is equal to

β0(1)v1v2 − v1α2β2(v2) +B,

where

B = v1`3q(v2) + `2(v2)p(v1) − `1(v1)q(v2) = −`4(v1q(v2)) + `2(v2)p(v1)

= − `4(v2p(v1)) + `2(v2)p(v1) = −v2`2p(v1);
hence, (8) follows from (5). Finally, (9) is a consequence of the differential properties
on L and K because

[([u4]β3`4(h)) u1] = [u4][`4(h)α1(u1)] = −[u4]k1(u1) = [(k4u4)u1] . �

Section 3. The main theorem.

The main result in this paper is Theorem 3.13, where we convert the DG−algebra
resolution M of Proposition 2.1 into a minimal resolution which is still a DG−algebra.
Suppose F is a DG−resolution of a cyclic module M over the local ring (R,m, k).
It is always true that the minimal resolution F ′ of M is a summand of F; how-
ever, most attempts to use the multiplication on F to induce a multiplication on
F ′ yield something which does not associate. However, if the kernel of F → F ′ is a
DG−ideal of F, then F ′ is a DG−resolution of M . For example, if F and F ′ differ
only at the back end, then F ′ is a DG−resolution.

Observation 3.1. If (F, f) is a length g, DG−resolution of a nonzero cyclic module
M over the local ring (R,m, k), then there exists a quotient (F ′, f ′) of F such that
F ′ is a DG−resolution of M , and f ′g ⊗ k is identically zero.

Proof. The ring R is local, so it is possible to find a submodule B of Fg such that
fg(B) is a summand of Fg−1 and im (fg) ⊆ (fg(B)+mFg−1). Let I be the complex

0 → B
fg−→ fg(B) → 0

(with B in position g). It is clear that B is a summand of Fg and that F/I is a
resolution of M by free R−modules. Furthermore, I is an ideal of F because

(3.2) x1fg(b) = f1(x1)b

for all x1 ∈ F1 and b ∈ B. �
Sometimes Observation 3.1 is all that is needed in order to convert M into a

minimal DG−algebra resolution.
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Definition 3.3. Let J be a grade four almost complete intersection in the local
ring (R,m, k). For each grade four complete intersection ideal with K ⊆ J and
µ(J/K) = 1, let

W (K) = im
(
TorR

1

(
R
K , k

) π∗−→ TorR
1

(
R

K : J , k
))
,

where π : R/K → R/(K : J) is the natural map. If it is possible to choose K so
that (W (K))2 = 0 in TorR

• (R/(K : J), k), then we say that hypothesis (W) holds
for J .

Corollary 3.4. ([17]) Let J be a grade four almost complete intersection in the
local ring (R,m, k). If two is a unit in R and hypothesis (W ) holds for J, then the
minimal R−resolution of R/J is a DG−algebra.

Proof. Fix a complete intersection K which exhibits hypothesis (W) for J . Adopt
the notation of Proposition 2.1. Combine Theorem 1.6 and Lemma 2.2 in order to
see that the resolution M of R/J is a DG−algebra. The hypothesis (W (K))2 = 0
is equivalent to the statement α2 ⊗ k = 0. It follows that αi ⊗ k = 0 for 2 ≤ i ≤ 4.
Since

(3.5) rankβj ⊗ k = rankα4−j ⊗ k,

we conclude that βj ⊗ k = 0 for 0 ≤ j ≤ 2 and mi ⊗ k = 0 for 1 ≤ i ≤ 3. An
application of Observation 3.1 completes the proof. �

Now that the Tor−algebras of grade four almost complete intersections have
been classified, it is possible to reformulate hypothesis (W) in an intrinsic manner.
It is not necessary for us to recapitulate the entire classification from [9]; but it is
worth while to let C[0] represent the graded−commutative k−algebra

C[0] =
•∧
k(−1)2

⊗
k

∧•
k(−1)3∧2
k(−1)3

=
k[e1, e2, e3, e4, e5]
(e3e4, e3e5, e4e5)

,

where each variable ei has degree one.

Proposition 3.6. Let J be a grade four almost complete intersection in the local
ring (R,m, k), and let T• be the algebra TorR

• (R/J, k). If two is a unit in R, then
the following statements are equivalent.

(a) Hypothesis (W ) holds for J.
(b) There is a four−dimensional subspace S of T1 with dimk S

2 = 6.
(c) The subalgebra k[T1] of T• is not isomorphic to C[0].

Furthermore, if hypothesis (W ) does not hold for J, then there exists a complete
intersection ideal K with K ⊆ J and µ(J/K) = 1 such that

(3.7) rank
(
π∗ : TorR

i (R/K, k) → TorR
i (R/I, k)

)
=
{

1, if i = 2,
2, if i = 1,

where I = K : J and π : R/K → R/I is the natural map.

Proof. Lemma 3.9 shows that conditions (a) and (b) are equivalent. Conditions (b)
and (c) are shown to be equivalent in Lemma 1.2 of [9]. The proof of (b) ⇒ (c) is
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a straightforward calculation. The proof of (c) ⇒ (b) uses the main theorem in [9],
which is proved under the additional hypothesis

(3.8) k is closed under the square root operation.

However, it is not difficult to see that condition (3.8) is only used in the description
of the multiplication T1 ⊗ T3 → T4. All of the products in T 4

1 are zero (because J
is not a complete intersection); consequently, the classification of the subalgebras
k[T1] ⊆ T• in Corollary 1.6 of [9] is valid even in the absence of (3.8); and therefore,
(c) ⇒ (b) even in the absence of (3.8).

The final statement is also a consequence of Lemma 3.9. If hypothesis (W) does
not hold for J , then k[T1] = C[0] and the subspace S = (e1, e2, e3, e4) of C[0]
satisfies dimk S

2 = 5 and dimk S
3 = 2. �

In the notation of Proposition 3.6, let ψ : J → T1 be the map of (0.1). If S is
any four−dimensional subspace of T1, then a routine general position argument will
produce a complete intersection ideal K with K ⊆ J , µ(J/K) = 1, and ψ(K) = S.

Lemma 3.9. Adopt the notation of Proposition 3.6. If S is a four−dimensional
subspace of T1, and K is a complete intersection ideal with K ⊆ J, µ(J/K) = 1,
and ψ(K) = S, then

dimk S
2 = 6 − rank

(
π∗ : TorR

2 (R/K, k) → TorR
2 (R/I, k)

)
, and

dimk S
3 = 4 − rank

(
π∗ : TorR

1 (R/K, k) → TorR
1 (R/I, k)

)
where I = K : J and π : R/K → R/I is the natural map.

Proof. The idea for this proof is taken from (4.1) and (4.2) in [9]. Apply Proposi-
tion 2.1 to the ideals K ⊆ I and compute the powers of S in H0(M) = T•, where
we write to mean ⊗ k. We see that

T1 = K1 ⊕ L0, T2 =
K2

im β2

⊕ L1, and T3 =
K3

im β3

⊕ kerβ2.

It is clear that S is the subspaceK1 of T1. Use Lemma 2.3 to read the multiplication
in H0(M):

S2 =
K2

im β2

⊆ T2, and S3 =
K3

imβ3

⊆ T3.

The proof is complete because of (3.5). �

Proposition 3.6 serves two purposes. On the one hand, hypothesis (W) from [17]
can now be replaced with the less awkward hypothesis k[T1] � C[0]. But even more
importantly, we now have a good handle on precisely which almost complete inter-
section ideals J are not covered in Corollary 3.4. Lemma 3.10 is a straightforward
calculation in which we demonstrate how we plan to put a DG−structure on the
minimal resolution of R/J for such ideals.
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Lemma 3.10. Let K ⊆ I be grade four ideals in the local ring (R,m, k), with K
a complete intersection and I Gorenstein. Assume that (3.7) holds for these ideals
and that two is a unit of R. Let (L, `) be a Poincaré DG−algebra which is the
minimal resolution of R/I. If there exists a four−generated submodule A of L1,
elements e1, e2 ∈ A, f ′1 ∈ L2, and a partial higher order multiplication ϕ′ on L,
with respect to A, such that

(a) `1(A) = K,
(b) [e1e2f ′1] = 1,
(c) Af ′1 ⊆ (e1, e2)f ′1, and
(d) ϕ′(f ′1 ⊗ v1) = 0 for all v1 ∈ L1,

then the minimal R-resolution of R/(K : I) is a DG−algebra.

Proof. Use (b) and (c) to find a3 and a4 with A = (e1, e2, a3, a4) and a3f
′
1 = a4f

′
1 =

0. Let K be a minimal resolution of R/K. Choose a basis ε1, . . . , ε4 for K1 and
orient K by insisting that [ε1∧ε2∧ε3∧ε4] = 1. Let α• : K → L be the DG−algebra
map with α1(εi) = ei for 1 ≤ i ≤ 2 and α1(εi) = ai for 3 ≤ i ≤ 4. Construct
the resolution M of Proposition 2.1. We see from (3.7) that rankα1 ⊗ k = 2 and
rankα2⊗k = 1. It follows that rankβ3⊗k = 2 and rankβ2⊗k = 1. The definition
of βi yields β2(f ′1) = ε3ε4. Formula (1), from the proof of Lemma 2.3, shows that
β3(eif

′
1) = εiε3ε4, for i = 1 and 2. Let x3 represent the element

[
0
f ′1

]

of M3, and let I be the subcomplex

I : 0 → (e1f ′1, e2f
′
1)

m4−−→ (m4(e1f ′1), m4(e2f ′1), x3)
m3−−→ (m3(x3)) → 0 → 0

of M. It is clear that M/I is the minimal R−resolution of R/(K : I). On the other
hand, M is a DG−algebra by Lemma 2.3; and hypotheses (c) and (d) have been
chosen in order to ensure that I is an ideal of M. Indeed, if

x1 =
[
u1

v0

]

is an arbitrary element of M1, then x1x3 is equal to α1(u1)f ′1 − v0q(f ′1), which is in
I by hypothesis. The rest of the products M · I are in I for formal reasons:

x1 ·m3(x3) = −m4(x1x3) +m1(x1)x3 and x2 ·m3(x3) = −(m2(x2))x3,

together with (3.2). �
Hypotheses (a) and (b) in Lemma 3.10 pose no difficulty. Indeed, the existence

of elements e1, e2, and f ′1 which satisfy (b) is a consequence of i = 2 in (3.7).
Furthermore, a routine calculation, using the classification of TorR• (R/I, k) in [9]
or [15], shows that e1, e2, and f ′1 can be chosen so that (a), (b) and

(c′) L1f
′
1 ⊆ (e1, e2)f ′1 + mL3.
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hold. However, a significant amount of work (sections 4, 5, and 6) is needed in
order to guarantee that hypothesis (c) is met on the nose. Hypothesis (d) is also
non-trivial; but, our method of attacking (c) leads to a natural proof of (d). At
any rate, Theorem 3.11 is all that is needed in order to complete the proof of
Theorem 3.13, which is the main result in this paper. The proof of Theorem 3.11
appears in section 6.

Theorem 3.11. Let I be a grade four Gorenstein ideal in the local ring (R,m, k),
(L, `) be the minimal R−resolution of R/I, and S be a subspace of T1, where T• =
TorR

• (R/I, k). If two is a unit in R and the subspace S2 of T2 is not zero, then there
exists a Poincaré DG−algebra structure on L and there exist elements e1, e2 ∈ L1

and f ′1 ∈ L2 such that
(a) the class of ei in T1 is an element of S, for i = 1 and 2,
(b) [e1e2f ′1] = 1, and
(c) L1f

′
1 ⊆ (e1, e2)f ′1.

Furthermore, if A is any four generated submodule of L1 which contains (e1, e2),
then there exists a partial higher order multiplication ϕ′ on L, with respect to A,
which satisfies

(d) ϕ′(f ′1 ⊗ v1) = 0 for all v1 ∈ L1.

Example 3.12. Theorem 3.11 obviously holds when I is a complete intersection.
Indeed, if e1, e2, e3, e4 is any basis for L1 for which (a) holds, then let f ′1 = e3e4.
Recall, from Example 1.4, that the zero map is a partial higher order multiplication
on L .

Remark. Consider the resolution L as given in the hypotheses of Theorem 3.11.
We know, from [10] and [16], that L already comes equipped with a Poincaré
DG−structure and a complete higher order multiplication. Unfortunately, we do
not know if these products satisfy conclusions (c) and (d). Consequently, in our
proof of the result we ignore the existing multiplicative structures and create new
ones from scratch.

Theorem 3.13. Let J be a grade four almost complete intersection ideal in a local
ring (R,m, k). If two is a unit in R, then the minimal resolution of R/J by free
R−modules is a DG−algebra.

Proof. Corollary 3.4 takes care of the case when hypothesis (W) holds for J . Hence-
forth, we assume that hypothesis (W) does not hold for J . Use Proposition 3.6 to
select ideals K ⊆ I for which (3.7) holds. Let (L, `) be the minimal resolution
of R/I. Apply Theorem 3.11 with S equal to the image of TorR

1 (R/K, k) in T1.
Now that e1, e2 ∈ L1 have been chosen, pick a3 and a4 with `1(A) = K, for
A = (e1, e2, a3, a4), and apply part (d) of Theorem 3.11 in order to verify that the
rest of the hypotheses of Lemma 3.10. The proof is complete because K : I = J .
�

Section 4. Tight double linkage and

the big from small construction.

Theorem 3.11 can be thought of as a lifting theorem. Let I be a grade four
Gorenstein ideal in the local ring (R,m, k), and let T• be the algebra TorR

• (R/I, k).
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Suppose that that we are given elements e1, e2 ∈ T1 and f ′1 ∈ T2 which satisfy

(∗)
[
e1e2f ′1

]
= 1, and T1f ′1 ⊆ (e1, e2) f ′1.

If L is a minimal DG−resolution of R/I, then (∗) takes place in L ⊗R k = T•.
In the course of proving Theorem 3.11, we must produce representatives e1, e2,
and f ′1 in L (for e1, e2, and f ′1, respectively), such that (∗) holds in L, that is,
without bars and with T1 = L1 replaced by L1. Our plan is to ignore the original
multiplication on L and to create a brand new multiplication which exhibits the
desired properties. The process has two steps. In section 5 we use the “big from
small construction” of [11] and [12] in order to produce a DG−resolution F whose
multiplication has the desired properties. The resolution F is not usually minimal;
we convert it into the appropriate minimal resolution in section 6. In the present
section we review the big from small construction and the related notion of tight
double linkage. The majority of the section is consumed by the statement and the
proof of Proposition 4.6. This result identifies the elements e1, e2, and f ′1 which
are used in the proof of Theorem 3.11 in section 6.

Definition 4.1. Let R be a ring, r be an element of R, and α• : B → A be a map
of DG−algebras, where (B, b) is a Koszul complex of length three over R and (A, a)
is a Poincaré DG−algebra of length four over R. Define maps βi : Ai → Bi−1 for
1 ≤ i ≤ 4 by

[(βixi)z4−i] = (−1)i+1[xiα4−iz4−i]

for all xi ∈ Ai and z4−i ∈ B4−i. When the big from small construction is applied
to the data (α•, r), the resulting complex is

F = F(α•, r) : 0 → F4
f4−→ F3

f3−→ F2
f2−→ F1

f1−→ F0,

where F0 = R, F1 = B1 ⊕A1, F2 = B2 ⊕A2 ⊕B1, F3 = A3 ⊕B2, F4 = A4,
f1 = [ b1 β1 + ra1 ],

f2 =
[
b2 β2 r
0 −a2 −α1

]
, f3 =


 β3 −r
−a3 −α2

0 b2


 , and f4 =

[
α3β4 − ra4

−b3β4

]
.

The relationship between H0(A) and H0(F) is explained in Proposition 4.3.

Definition 4.2. ([14]) If I and I ′ are grade g Gorenstein ideals in the commutative
noetherian ring R and K is a grade g − 1 complete intersection in R, then there
is a tight double link between I and I ′ over K, if there exists an almost complete
intersection ideal J = (K, y, y′) with (K, y) and (K, y′) both grade g complete
intersection ideals, and

(K, y) : I = J = (K, y′) : I ′.

Caution: The ideal J in the above definition must be proper and is not permitted
to be a complete intersection.
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Proposition 4.3. Let K ⊆ I be ideals in the commutative noetherian ring R,
where K is a grade three complete intersection and I is a grade four Gorenstein
ideal. Let B be a Koszul complex of length three which resolves R/K, A be a
Poincaré DG−algebra of length four which resolves R/I, and α• : B → A be a map
of DG−algebras over R. If there is a tight double link between I and a grade four
Gorenstein ideal I ′ over K, then there is an element r ∈ R so that F(α•, r) resolves
R/I ′.

Sketch of proof. The proof of Theorem 2.1 in [13] shows that I ′ is equal to the
image of [ b1 β1 + ra1 ] for some element r in R. The maps βi have been defined
in order to make

0 −−−−−→ B3
b3−−−−−→ B2

b2−−−−−→ B1
b1−−−−−→ B0

α3

y α2

y α1

y α0

y
0 −−−−−→ A4

a4−−−−−→ A3
a3−−−−−→ A2

a2−−−−−→ A1
a1−−−−−→ A0

β4

y β3

y β2

y β1

y
0 −−−−−→ B3

b3−−−−−→ B2
b2−−−−−→ B1

b1−−−−−→ B0

be a commutative diagram. An iterated mapping cone argument produces the the
complex F = F(α•, r) and shows that Hi(F) = 0 for 2 ≤ i. One uses the fact that
H0(F) is a perfect R−module in the course of proving H1(F) = 0. While performing
the calculations, it is useful to notice that

[((α3β4 − ra4)x4) · x1] = [x4](β1 + ra1)x1 and − [(b3β4x4) · z1] = [x4]b1(z1)

for all xi ∈ Ai and zi ∈ Bi, and that βiαi = 0 for 1 ≤ i ≤ 3. See [11, Theorem 1.3]
or [15, Lemma 1.5] for details. �

The name “big from small construction” refers to the fact that when the con-
struction was introduced in [11], it was used (with α1 ⊗ k = 0) to produce a
Gorenstein ideal I ′ which required more generators than the original Gorenstein
ideal I. In the meantime, the process has been found to be even more useful when
used “in reverse”. Indeed, the key induction tool in [15] is the big from small con-
struction applied with rankα1 ⊗ k = 3. The next result is essentially the same as
Theorem 1.6 in [15].

Proposition 4.4. Let I be a grade four Gorenstein ideal in the local ring (R,m, k),
and K ⊆ I be a grade three complete intersection with µ(I/K) = µ(I) − 3. If I ′ is
a Gorenstein ideal which is one tight double link over K away from I, then

µ(I ′) = µ(I) − rank
(
π∗ : TorR

2 (R/K, k) → TorR
2 (R/I, k)

)
,

where π : R/K → R/I is the natural surjection.

Note. If the ideal I, in the above result, is a complete intersection, then there do
not exist any ideals I ′ which are one tight double link over K away from I, because
any candidate for the intermediate almost complete intersection J = (K, y) : I would
be a complete intersection instead.
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Proof. Let A and B be the minimal resolutions of R/I and R/K, respectively.
Apply Proposition 4.3 in order to find a resolution F(α•, r) of R/I ′. (It makes
no difference whether r is a unit or r is in m.) The hypothesis guarantees that
rankα1 ⊗ k = 3; thus,

µ(I ′) = µ(I) + 3 − rank f2 ⊗ k = µ(I) − rankβ2 ⊗ k.

The definition of βi shows that

(4.5) rankβi ⊗ k = rankα4−i ⊗ k;

and it is clear that rankα2 ⊗ k = rank
(
π∗ : TorR

2 (R/K, k) → TorR
2 (R/I, k)

)
. �

Proposition 4.6. Let I be a grade four Gorenstein ideal in the local ring (R,m, k),
T• be the algebra TorR

• (R/I, k), and S be a two dimensional subspace of T1 with
S2 not equal to zero in T2. If I is not a complete intersection, then there exists an
element r ∈ R, a DG−algebra map α• : B → A, and a basis ε1, ε2, ε3 for B1 such
that [ε1 ∧ ε2 ∧ ε3] = 1 and the following statements hold.

(a) The complex F = F(α•, r) is an R−resolution of R/I.
(b) The subspace S of T1 is generated by the classes of e1 and e2 in H1(F),

where means ⊗R k and

ei =
[
εi

0

]
∈ F1, for i = 1 and 2.

(c) If F is not the minimal resolution of R/I, then the minimal resolution of
R/I has the form F/J, where J is described in either (i) or (ii) below.

(i) There is an element g1 ∈ A3 such that [g1α1(ε3)] = 0, [g1α1(ε1)] = 1,
and J is the subcomplex

J : 0 −→ 0
f4−→ (y3)

f3−→ (f3(y3), y2)
f2−→ (f2(y2))

f1−→ 0

of F, for

y3 =
[
g1
0

]
∈ F3 and y2 =


 0

0
ε1


 ∈ F2.

(ii) There are elements g1, g2 ∈ A3 such that

[g1α1(ε3)] = [g2α1(ε3)] = 0,
[g1α1(ε2)] = [g2α1(ε1)] = 0,
[g1α1(ε1)] = [g2α1(ε2)] = 1,

and J is the subcomplex

J : 0 −→ 0
f4−→ (y3, y′3)

f3−→ (f3(y3), f3(y′3), y2, y
′
2)

f2−→ (f2(y′2), f2(y2))
f1−→ 0

of F, for

y3 =
[
g1
0

]
, y′3 =

[
g2
0

]
∈ F3 and y2 =


 0

0
ε1


 , y′2 =


 0

0
ε2


 ∈ F2.
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Remark. When we apply Proposition 4.6 in our proof of Theorem 3.11 (see section
6), we will take f ′1 to be the element


 0

0
ε3




of F2. It is very important that this element not be in J. Most of the maneuvers
which occur in the proof of Proposition 4.6 are designed with this goal in mind.

Proof. Select an element θ3 ∈ T1\S with the property that dimk(θ3S) is maximized.
Choose a basis θ1, θ2 for S with θ2θ3 = 0 if dimk(θ3S) ≤ 1. Let d be the dimension
of the subspace (θ3, S)2 of T2. The hypothesis S2 6= 0 guarantees that θ1θ2 6= 0;
consequently, 1 ≤ d ≤ 3. Recall the map ψ : I → T1 from (0.1). A general position
argument produces a regular sequence w1, w2, w3 in I such that w1, w2, w3 begins
a minimal generating set for I and ψ(wi) = θi for 1 ≤ i ≤ 3. Let K be the ideal
(w1, w2, w3) and let I ′ be an ideal which is one tight double link over K away
from I. (The ideal I ′ exists because I is not a complete intersection. Indeed, if
y is any element of I for which w1, w2, w3, y is a regular sequence, then the ideal
J = (K, y) : I is necessarily an almost complete intersection. Select y′ in J so that
J = (K, y, y′) and (K, y′) is a grade four complete intersection. Let I ′ = (K, y′) : J .)

We use the fact that tight double linkage is a symmetric relation. On the one
hand, Proposition 4.4 shows that

(4.7) µ(I ′) = µ(I) − d.

(In the proof of Proposition 4.4 a resolution for R/I ′ was built out of a resolution
for R/I; we have no further need for this resolution.) On the other hand, we may
use Proposition 4.3 to produce a resolution for R/I out of a resolution for R/I ′.
More precisely, let α• : B → A be a map of DG−algebras over R, where (A, a) is
the minimal resolution of R/I ′ and (B, b) is the minimal resolution of R/K. Let
ε1, ε2, ε

′
3 be a basis for B1 with b1(εi) = wi, for 1 ≤ i ≤ 2, and b1(ε′3) = w3.

(Eventually, we will replace ε′3 with ε3 = ε′3 − r1ε1 − r2ε2 for some ri ∈ R.) Orient
B by insisting that [ε1 ∧ ε2 ∧ ε′3] = 1. Proposition 4.3 guarantees that F(α•, r) = F
resolves R/I for some element r ∈ R. We see that conclusions (a) and (b) hold.

We must determine how far F is from the minimal resolution of R/I. Use the
presentation

F2
f2−→ F1 −→ I

to see that µ(I) = µ(I ′) + 3 − rank f2; thus, (4.7) shows that rank f2 = 3 − d ≤ 2.
It quickly follows that r = 0. Furthermore, we also conclude that β2 = 0. Indeed, if
β2 6= 0, then (4.5) shows that α2 6= 0; hence, rankα1 ≥ 2 and the bound on rank f2

has been contradicted. When the above information is put together, we see that
f1 = 0, f4 = 0,

f2 =
[

0 0 0
0 0 −α1

]
, and f3 =


β3 0

0 0
0 0


 ,



ALGEBRA RESOLUTIONS OF ALMOST COMPLETE INTERSECTIONS 17

with 0 ≤ rankα1 = rankβ3 = 3 − d. If d = 3, then F is the minimal resolution of
R/I.

We next consider the case d = 2. Let z1 be an element of B1 with α1(z1) a basis
for imα1. The minimal resolution A is a Poincaré algebra so there exists g1 ∈ A3

with [g1α1(z1)] = 1. The definition of β3 shows that β3(g1) is a basis for imβ3. Let

(4.8) y2 =


 0

0
z1


 ∈ F2 and y3 =

[
g1
0

]
∈ F3.

It follows that F/J is a minimal R−resolution of R/I, where J is the subcomplex

0 −→ 0
f4−→ (y3)

f3−→ (f3(y3), y2)
f2−→ (f2(y2))

f1−→ 0

of F.
The case d = 1 proceeds in an identical manner. Select z1, z′1 ∈ B1 and g1, g2 ∈

A3 with α1(z1), α1(z′1) a basis for imα1 and

[g1α1(z1)] = [g2α1(z′1)] = 1, [g1α1(z′1)] = [g2α1(z1)] = 0.

Let y2 and y3 be as in (4.8) and define

y′2 =


 0

0
z′1


 ∈ F2 and y′3 =

[
g2
0

]
∈ F3.

It follows that F/J is a minimal resolution of R/I where J is the subcomplex

0 −→ 0
f4−→ (y3, y′3)

f3−→ (f3(y3), f3(y′3), y2, y
′
2)

f2−→ (f2(y2), f2(y′2))
f1−→ 0

of F.
We next show that if d ≤ 2, then α1(ε1) 6= 0. Recall that the elements θi ∈ T1

have been defined so that θ2θ3 = 0. The multiplication in T• is induced by the
multiplication in F, so

0 = θ2θ3 = the class of


 ε2ε′30

0


 in (F/J)2 ⊗R k.

One consequence of this is that there exists an element g ∈ A3 with ε2ε3 − β3(g) ∈
mB2. Multiply the last expression by ε1 in order to draw the desired conclusion.

If d = 1, then we may take the element z1 of (4.8) to be ε1. Define ε3 =
ε′3 − [g1α1(ε′3)]ε1. Notice that [ε1 ∧ ε2 ∧ ε′3] and [ε1 ∧ ε2 ∧ ε3] have the same value.
We conclude that the minimal resolution of R/I is described in (i).

A similar calculation shows that if d = 1, then a1(ε1), a1(ε2) is a basis for imα1.
Indeed, the fact that θ1θ3 = 0 in T2 implies that ε1ε3 ∈ (im β3 + mB2). It follows
that α1(ε2) − r0α1(ε1) /∈ mB1 for any r0 ∈ R. If we take z1 = ε1, z′1 = ε2, and

ε3 = ε′3 − [g1α1(ε′3)]ε1 − [g2α1(ε′3)]ε2,

then the minimal resolution of R/I is given in (ii). �
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Section 5. Passing multiplication

across the big from small construction.

The big from small construction of Definition 4.1 builds the complex F from
complexes A and B. The DG−multiplication on F in Theorem 5.1 is built from
something akin to partial higher order multiplication on A. (In fact, we will use
complete higher order multiplication on A in our description of multiplication on
F; but, some lesser (not yet named) structure would work.) The idea of using
the big from small construction to convert higher order multiplication on A into
ordinary DG−multiplication on F is not new; it is the key idea in [12]. However,
the A in [12] is a Koszul complex; and therefore, all higher order multiplication on
A is zero; consequently, Theorem 5.1 is the first successful and interesting use of
the idea. In Theorem 5.1 we also endow F with partial higher order multiplication
(as required by Theorem 3.11). This partial higher order multiplication on F
requires complete higher order multiplication on A. At present it is not possible
to use multiplicative structures on A in order to endow F with a complete higher
order multiplication. (Indeed, such a result would require an even higher order
level of multiplication on A. Actually, we believe that an entire hierarchy of higher
order multiplications live on A; however, at present, the best existence theorem is
Theorem 1.6 and the best applications are Lemma 2.3 and Theorem 3.11; and we
have not pursued the issue any further.) At any rate, the fact that it is impossible
to pass complete higher order multiplication across the big from small construction
explains why Lemma 3.10 uses Lemma 2.3 rather than Lemma 2.2.

Theorem 5.1. Let R be a ring in which two is a unit, r be an element of R, and
α• : B → A be a map of DG−algebras, where (B, b) is a Koszul complex of length
three over R and (A, a) is a Poincaré DG−algebra of length four over R. Construct
the complex F = F(α•, r) of Definition 4.1. Assume that ϕ : A2 ⊗

∧5
A1 → R is a

complete higher order multiplication on A. Let h ∈ A4 and η ∈ B3 =
∧3

B1 satisfy
[h] = [η] = 1; and define maps

p :
2∧
A1 → A2 and q : A2 ⊗A1 → A3 by

[x2p(x1 ∧ x′1)] = ϕ

(
x2 ⊗ x1 ∧ x′1 ∧ (

3∧
α1)(η)

)
= [x1q(x2 ⊗ x′1)]

(a) The following multiplication gives F the structure of a Poincaré DG−algebra:
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F1 ⊗ F1 → F2 :
[
z1
x1

] [
z′1
x′1

]
=


 z1z

′
1

−(α1z1)x′1 − x1(α1z
′
1) − rx1x

′
1 + p(x1 ∧ x′1)

(a1x1)z′1 − (a1x
′
1)z1 + β2(x1x

′
1)




F1 ⊗ F2 → F3 :
[
z1
x1

] z2x2

z′1


 =

[
x1(α2z2) − [z1z2]a4(h) − (α1z1)x2 − rx1x2 + q(x2 ⊗ x1)

z1z
′
1 − (a1x1)z2 − β3(x1x2)

]

F1 ⊗ F3 → F4 :
[
z1
x1

] [
x3

z2

]
= [z1z2]h− x1x3

F2 ⊗ F2 → F4 :


 z2x2

z1




 z′2x′2
z′1


 = [z2z′1]h+ [z1z′2]h− x2x

′
2.

(b) Let A be the submodule of F1 which is generated by the fixed elements

[
ε1
0

]
,

[
ε2
0

]
,

[
z′1
x′1

]
, and

[
z′′1
x′′1

]
,

with ε1, ε2, z
′
1, z

′′
1 ∈ B1, and x′1, x

′′
1 ∈ A1. If the map ϕ′ : F2 ⊗ F1 → R is

defined by

ϕ′




 z2x2

ž1


⊗

[
z1
x1

] =
−[(α1ε2)x1x

′
1x

′′
1 ][ε1z2] + [(α1ε1)x1x

′
1x

′′
1 ][ε2z2]

−ϕ (x2 ⊗ α1ε1 ∧ α1ε2 ∧ x1 ∧ x′1 ∧ x′′1)
+[ε1ε2z′1][x2x1x

′′
1 ] − [ε1ε2z1][x2x

′
1x

′′
1 ] − [ε1ε2z′′1 ][x2x1x

′
1],

for all zi, ži ∈ Bi and xi ∈ Ai, then ϕ′ is a partial higher order multiplication
on F, with respect to A.

Remark. If ε1, ε2, ε3 are elements of B1 with ε1ε2ε3 = η, then conclusions (b), (c),
and (d) of Theorem 3.11 hold for the elements

e1 =
[
ε1
0

]
∈ F1, e2 =

[
ε2
0

]
∈ F1, and f ′1 =


 0

0
ε3


 ∈ F2.

Recall that the elements e1 and e2 also appear in Proposition 4.6.

Proof. In this proof we denote elements of Ai, Bi, and
∧i

A1 by xi, zi, and X(i),
respectively.
(a) The proof consists of a long but straightforward verification that the proposed
multiplication on F is associative and satisfies the differential property (2.4). As in
the proof of Lemma 2.3, we record facts that one needs in order to complete the
verification, but we omit the verification itself. One of the crucial properties of a
complete higher order multiplication appears as (3) in the proof of Proposition 2.5
in [16] and [17]:

(5.2) ϕ(x1x
′
1 ⊗ x′′1 ∧ x1 ∧X(3)) + ϕ(x1x

′′
1 ⊗ x′1 ∧ x1 ∧X(3)) = 0.
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It immediately follows that

(1) β2p(x1 ∧ x′1) = 0,
(2) β3q(x2 ⊗ x1) = 0,
(3) q(α2(z2) ⊗ x1) = 0, and
(4) α1(z1)x′′1p(x1 ∧ x′1) + α1(z1)x1p(x′′1 ∧ x′1) = 0.

It is also shown in [16, 17] that if the map P :
∧5

A1 → A2 is defined by

(5.3) [x2P (X(5))] = ϕ(x2 ⊗X(5)), then P (x1 ∧X(4))P (x′1 ∧X(4)) = 0.

The proof also uses the following formulas:

(5) βi+j((αizi)xj) = ziβj(xj)
(6) a2p(x1 ∧ x′1) = (β1x

′
1)x1 − (β1x1)x′1 − α1β2(x1x

′
1)

(7) q(a3(x3) ⊗ x1) = x1α2β3(x3) − (β1x1)x3 − α3β4(x1x3)
(8) p(x1 ∧ a2(x2)) + a3q(x2 ⊗ x1) = α2β3(x1x2) − x1α1β2(x2) − (β1x1)x2

(9) q(x′2 ⊗ a2(x2)) + q(x2 ⊗ a2(x′2)) = α3β4(x2x
′
2) − (α1β2x2)x′2 − (α1β2x

′
2)x2.

Formula (5) is an immediate consequence of the definition of βi in Definition 4.1.
Let ε1, ε2, ε3 be a basis for B1 with ε1 ∧ ε2 ∧ ε3 = η. The definition of βi yields

β1(x1) = + [x1α3(ε1ε2ε3)]

β2(x2) = − [x2α2(ε2ε3)]ε1 + [x2α2(ε1ε3)]ε2 − [x2α2(ε1ε2)]ε3

β3(x3) = + [x3α1(ε3)]ε1ε2 − [x3α1(ε2)]ε1ε3 + [x3α1(ε1)]ε2ε3

β4(x4) = − [x4]ε1ε2ε3.

Formulas (6) and (7) are reformulations of axiom (i) from Definition 1.3; and (8)
and (9) are reformulations of axiom (ii).

(b) This proof is also a long straightforward verification. The identity

[z1z′1z
′′
1 ]z′′′1 − [z1z′1z

′′′
1 ]z′′1 + [z1z′′1 z

′′′
1 ]z′1 − [z′1z

′′
1 z

′′′
1 ]z1 = 0

is used quite often; it holds because
∧4

B1 = 0. The multiplication of part (a)
yields the following values for

∧4
F1 → F4 → R:

[
[
z1
0

] [
z′1
0

] [
z′′1
0

] [
z′′′1

0

]
] = 0

[
[
z1
0

] [
z′1
0

] [
z′′1
0

] [
0
x′′′1

]
] = −a1(x′′′1 )[z1z′1z

′′
1 ]

[
[
z1
0

] [
z′1
0

] [
0
x′′1

] [
0
x′′′1

]
] = −[α1(z1)α1(z′1)x

′′
1x

′′′
1 ]

[
[
z1
0

] [
0
x′1

] [
0
x′′1

] [
0
x′′′1

]
] = −r[α1(z1)x′1x

′′
1x

′′′
1 ] + [α1(z1)x′1p(x

′′
1 ∧ x′′′1 )]. �
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Section 6. The proof of Theorem 3.11.

Lemma 6.1 is the final piece in the puzzle. When we began this paper, we had
a multiplicative structure on the resolution M of the almost complete intersection
R/J . Our job was to push the multiplication down to the minimal resolution of
R/J . In Lemma 3.10 we exchanged the original job for the problem of finding
appropriate multiplicative structures on the minimal resolution of R/I, for some
Gorenstein ideal I. In section 5 we found the appropriate multiplicative structures
on the (non-minimal) resolution F of R/I. We still must drag the multiplicative
information from F to the minimal resolution of R/I. This last step is accomplished
in Lemma 6.1. The trick of section 3 will not work on F. Indeed, it is impossible
to view the minimal resolution of R/I as F/I for some DG−ideal I of F, because F
is a Poincaré algebra and therefore F4 is contained in every nonzero DG−ideal of
F. Nonetheless, the proof of Lemma 6.1 is remarkably simple. If F is a length four
Poincaré algebra and Mi is a submodule of Fi, then

M⊥
i = {x4−i ∈ F4−i | x4−iMi = 0}.

Lemma 6.1. Let (F, f) be a length four Poincaré DG−algebra over R. Suppose
that y2 ∈ F2 and y3 ∈ F3 are elements of F which satisfy y2y2 = 0 and [y2 ·f3(y3)] =
1. Let J be the subcomplex

0 −→ 0
f4−→ (y3)

f3−→ (f3(y3), y2)
f2−→ (f2(y2))

f1−→ 0

of F, and let A be a four generated submodule of F1 which has the property that
y3 · A = 0. The following statements hold.

(a) The complex F/J is isomorphic to the subcomplex (L, `) of F, where L4 = F4,
L3 = (f2(y2))⊥, L2 = (f3(y3), y2)⊥, L1 = (y3)⊥, and L0 = F0.

(b) If multiplication ∗ : L ⊗ L → L is given by

x1 ∗ x′1 = x1x
′
1 − [x1x

′
1y2]f3(y3) x1 ∗ x3 = x1x3

x1 ∗ x2 = x1x2 − [x1x2f2(y2)]y3 x2 ∗ x′2 = x2x
′
2,

for all xi ∈ Li, where xixj represents multiplication in F, then L is a
Poincaré DG−algebra.

(c) If ϕ′ : F2 ⊗ F1 → R is a partial higher order multiplication on F, with
respect to A, then the restriction of ϕ′ to L2 ⊗ L1 is a partial higher order
multiplication on L, with respect to the submodule A of L1.

Proof. (a) A straightforward calculation shows that fi(Li) ⊆ Li−1. Define
πi : Fi → Li by π0 = id, π4 = id,

π1(x1) = x1 + [x1y3]f2(y2), π2(x2) = x2 − [x2y2]f3(y3) − [x2f3(y3)]y2,

and π3(x3) = x3 − [x3f2(y2)]y3. It is clear that π• : F → L is a map of complexes
with kernel equal to J.
(b) An alternate description of multiplication in L is

xi ∗ xj = πi+j(xixj),
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for xi ∈ Li. The multiplication ∗ satisfies differential property (2.4), because the
projection π• of F onto L and the inclusion of L into F are both maps of complexes.
A small calculation is needed to see that ∗ is associative:

(x1 ∗ x′1) ∗ x′′1 = π3 (x1x
′
1x

′′
1)

x1 ∗ (x′1 ∗ x2) = x1x
′
1x2 = (x1 ∗ x′1) ∗ x2.

For example,
(x1 ∗ x′1) ∗ x′′1 = π3(x1x

′
1x

′′
1) − [x1x

′
1y2]X,

where

X = f3(y3)x′′1 − [f3(y3)x′′1f2(y2)]y3 = f3(y3)x′′1 − f1(x′′1)y3 = f4(y3x′′1) = 0.

It is also clear that the multiplication on L exhibits Poincaré duality.
(c) The hypothesis guarantees that A is a submodule of L1. Multiplication in L
satisfies

x1 ∗ x′1 ∗ x′′1 ∗ x′′′1 = x1x
′
1x

′′
1x

′′′
1 .

It follows that the restriction of the map Γ: F3⊗
∧5

F1 → R of (1.2) to L is exactly
the same as the map Γ on L which is defined using the multiplication ∗. The same
statement holds for Φ: S2L2 ⊗

∧4
L1 → R. �

We record the next result only for the convenience of being able to refer to it.
One proves it by iterating Lemma 6.1. For this iteration to work it is necessary for
y′3 ∈ (f2(y2))⊥ and y′2 ∈ (f3(y3), y2)⊥; hence, these conditions are included in the
hypotheses.

Corollary 6.2. Let (F, f) be a length four Poincaré DG−algebra over R. Suppose
that y2, y′2 ∈ F2 and y3, y′3 ∈ F3 are elements of F which satisfy (y2, y′2)

2 = 0, and

[y2 · f3(y3)] = [y′2 · f3(y′3)] = 1, [y2 · f3(y′3)] = [y′2 · f3(y3)] = 0.

Let J be the subcomplex

0 −→ 0
f4−→ (y3, y′3)

f3−→ (f3(y3), f3(y′3), y2, y
′
2)

f2−→ (f2(y2), f2(y′2))
f1−→ 0

of F, and let A be a four generated submodule of F1 with (y3, y′3) · A = 0. The
following statements hold.

(a) The complex F/J is isomorphic to the subcomplex (L, `) of F, where L4 = F4,

L3 = (f2(y2), f2(y′2))
⊥, L2 = (f3(y3), f3(y′3), y2, y

′
2)

⊥, L1 = (y3, y′3)
⊥,

and L0 = F0.
(b) If multiplication ∗ : L ⊗ L → L is given by

x1 ∗ x′1 = x1x
′
1 − [x1x

′
1y2]f3(y3) − [x1x

′
1y

′
2]f3(y

′
3) x1 ∗ x3 = x1x3

x1 ∗ x2 = x1x2 − [x1x2f2(y2)]y3 − [x1x2f2(y′2)]y
′
3 x2 ∗ x′2 = x2x

′
2,

for all xi ∈ Li, where xixj represents multiplication in F, then L is a
Poincaré DG−algebra.

(c) If ϕ′ : F2 ⊗ F1 → R is a partial higher order multiplication on F, with
respect to A, then the restriction of ϕ′ to L2 ⊗ L1 is a partial higher order
multiplication on L, with respect to the submodule A of L1. �



ALGEBRA RESOLUTIONS OF ALMOST COMPLETE INTERSECTIONS 23

Proof of Theorem 3.11. We are given a grade four Gorenstein ideal I in a local ring
(R,m, k) and a subspace S of T1 with S2 6= 0, where T• = TorR

• (R/I, k). There
is no harm in assuming that dimk S = 2. Example 3.12 shows that the theorem
holds if I is a complete intersection; henceforth, we assume that I is not a complete
intersection. Proposition 4.6 furnishes the resolution F of R/I and elements e1 and
e2 of F1 which fulfill conclusion (a). The resolution F is endowed with a Poincaré
DG−algebra structure in Theorem 5.1. (We use the hypothesis that two is a unit in
R when we apply Theorem 1.6 in order to know that there exists a complete higher
order multiplication on A.) The remark following Theorem 5.1 exhibits an element
f ′1 ∈ F2 so that conditions (b), (c), and (d) also hold. The proof is complete in the
case that F is the minimal resolution of R/I.

If F is not the minimal resolution, then we apply either Lemma 6.1 or Corol-
lary 6.2 to the complex J of Proposition 4.6. In either case, we see that e1, e2 ∈ L1

and f ′1 ∈ L2. Observe that (b) and (c) hold in the algebra L (with multiplication
∗). In particular, if

v1 =
[
z1
x1

]

is an element if L1 for some z1 ∈ B1 and x1 ∈ A1, then

v1 ∗ f ′1 =
[
z1
x1

]
∗

 0

0
ε3


 = π3

[
0

z1ε3

]
∈ π3(e1f ′1, e2f

′
1) = (e1 ∗ f ′1, e′2 ∗ f ′1).

Finally, if A is a four generated submodule of L1 with (e1, e2) ⊂ L1, then A is a
submodule of F1. Use part (b) of Theorem 5.1 to create a partial higher order
multiplication ϕ′ on F, with respect to A. It is clear that ϕ′ satisfies (d). Propo-
sition 6.1 and Corollary 6.2 show that the restriction of ϕ′ to L is a partial higher
order multiplication which also satisfies (d). �

We conclude with a comment about the hypothesis “two is a unit”. This hypoth-
esis is used extensively in the proof of Theorem 1.6. We presume that a comparable
result is valid in characteristic two; although we note that the proof in [8] is sub-
stantially different than the proof in [10]. Division by two also appears in the proof
of Lemma 2.3, (5.2), and (5.3). These divisions will probably disappear when a
characteristic two formulation of Theorem 1.6 is established.
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