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Abstract. Consider the polynomial ring R = R0[X, Y ] where R0 is a normal
domain, and X1×g and Yg×f are matrices of indeterminates. The R−ideal J =

I1(X)+ Imin{f,g}(Y ) defines a variety of complexes over R0. The divisor class group

of R/J is isomorphic to C` (R0) ⊕ Z[I′], where I′ is an ideal of R/J generated by
appropriately chosen lower order minors of Y . We produce the minimal R−free res-
olution of i[I′] for all integers i ≥ −1. If f is greater than or equal to g, then J is a

generic residual intersection of the generic grade g complete intersection I1(X). The
resolutions that we produce in this case are, in many ways, analogous to resolutions
of divisors on generic residual intersections of grade two perfect ideals or grade three
Gorenstein ideals.

All rings in this paper are commutative noetherian rings with one; f and g
always represent non-negative integers. Let R1 be a ring. Consider linear forms
z1, . . . , zf in the polynomial ring R = R1[x1, . . . , xg], where zj =

∑g
i=1 yijxi. If S

is the quotient ring R/(z1, . . . , zf ), then SpecS → SpecR1 represents a family of
linear subspaces of codimension at most min{f, g} in affine g−space. Avramov [4]
refers to the set of points in SpecR1 over which the fibre is a linear subspace of
codimension strictly less than min{f, g} as the “discriminantal locus” of the family
SpecS → SpecR1. The inverse image in SpecS of this discriminantal locus is
defined by the ideal J = (z1, . . . , zf ) + Imin{f, g}(Y ) of R (where “It(Y )” denotes
the ideal generated by the t × t minors of the matrix Y = (yij)). In this paper, we
produce a family of complexes of free R−modules associated to the quotient ring
R/J. In particular, in the generic case we resolve half of the divisor class group of
R/J.

Suppose that z1, . . . , zf are homogeneous polynomials in C[x1, . . . , xg]. Since

g∑
i=1

∂zj

∂xi
xi = (deg zj)zj ,

it is observed in [11] that an alternate significance may be attached to the ideal J .
If f < g and Y = (yij) is the matrix with yij = 1

(deg zj)
∂zj

∂xi
, then J = (z1, . . . , zf ) +
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If (Y ) defines the singular locus of the complete intersection defined by (z1, . . . , zf )
in projective (g − 1)−space.

Let X and Y be matrices, of shape 1×g and g×f , respectively, over the arbitrary
commutative noetherian ring R. We consider the ideal J of R which is defined by

(0.1) J = I1(XY ) + Imin{f, g}(Y ).

If J is a proper ideal of R, then it is known (see, for example, [11, Theorem 5.1]
and [8, Theorem 3.6]) that

(0.2) grade (J) ≤ max {f, g};
furthermore, if equality holds in (0.2), then J is a perfect ideal. In this paper we
are concerned with ideals J of the form of (0.1) for which equality holds in (0.2).
The history of such ideals is quite rich. We begin with their homological history.
Northcott [27] found the R−resolution of R/J in the case that f = g. In this case,
J is called a Northcott ideal; it is an almost complete intersection, and it is one
link from a complete intersection. Herzog [13] resolved R/J when f = g − 1. In
this case, J is called a Herzog ideal; furthermore, the ideal is Gorenstein and it is
two links from a complete intersection. It is essentially the case (see [6, Section 3])
that every ideal which is a small number of links from a complete intersection is a
Northcott ideal or a Herzog ideal. (See [5, Theorem 1.5] for up-to-date homological
information about ideals of small linking number.) Buchsbaum and Eisenbud [11,
Section 5] resolved R/J whenever f ≤ g. (Avramov [3] also has resolved R/J when
f ≤ g. His resolution is not minimal; nonetheless, he is able to use it in order to
compute the Poincaré series

PR/J(t) =
∞∑

n=0

dimk TorR/J
n (k, k) tn

of R/J in terms of the Poincaré series of R whenever (R,m, k) is a local ring and
f = 2.) If g ≤ f, then R/J is resolved in [8]. In this case, Huneke and Ulrich
[19] have shown that J is an f−residual intersection of a complete intersection
(provided X, Y , and R are sufficiently generic; for example, the statement holds if
I1(X) is a complete intersection and R is a Gorenstein ring.)

We now turn to the divisorial history of ideals of the form of J . In this discussion
the entries of X and Y are indeterminates over a normal domain R0, and R is the
polynomial ring R0[X,Y ]. (We mean, of course, that R = R0[{xi}, {yi j}].) In
[4] Avramov considered the quotient R/J , with f ≤ g, as the symmetric algebra
S

(R1/K)
• (M/KM), where R1 is the polynomial ring R0[Y ], K is the ideal If (Y ) of

R1, and M is the R1−module presented by

Rf
1

Y−→ Rg
1 → M → 0.

He produced an R1−resolution of each symmetric power St(M/KM), he proved
that R/J is a normal domain, and he proved that the inclusion map R0 → R/J
induces an isomorphism

(0.3) C` (R/J) ∼= C` (R0) ⊕ Z
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whenever 2 ≤ f ≤ g.
More detailed information about the divisor class group of R/J can be obtained

once we consider R/J from the point of view of the variety of complexes. In affine
space Afg+g(R0), consider the variety V of all complexes

0 → Rf
0

θ2−→ Rg
0

θ1−→ R0

with rank θ2 < min{f, g}. DeConcini and Strickland [12] have used Hodge algebra
techniques to prove that J is the defining ideal of the variety V and that J is a
perfect ideal with grade equal to the maximum of {f, g}. Furthermore, they proved
that R/J is a normal domain. Bruns [7] and Yoshino [32] extended the work of [12]
by calculating the divisor class groups of the rings in question. In particular, they
proved that (0.3) holds for all f and g with 2 ≤ min{f, g}. Furthermore, Bruns has
identified a generator [I ′] for the summand Z in (0.3). Let I ′ be the ideal

(0.4)
Imin{f, g}−1(Y ′) + J

J

of R/J , where Y ′ is the{
(f − 1) × f submatrix of Y consisting of rows 1 to f − 1, if f < g

g × (g − 1) submatrix of Y consisting of columns 1 to g − 1, if g ≤ f.

Bruns has proved that I ′ is a divisorial ideal of R/J and that the class [I ′] of I ′ in
C` (R/J) generates the summand Z in (0.3).

We are interested in resolving R−modules which represent elements of the class
group of R/J . We observed above that R/J (which represents the class i[I ′] for
i = 0) has been resolved for all f and g. If g ≤ f , then Pellikaan ([28] or [29]) has
resolved the representative I(X)/I(XY ) of the class i[I ′] for i = 1. In Theorem 9.2
we give the minimal R−resolution of a representative of i[I ′] for all i ≥ −1 and for
all f and g with 2 ≤ min{f, g}.

The impetus for resolving elements of the divisor class group of R/J is an on-
going project to resolve residual intersections. (See [2], [17], or [19] for an intro-
duction to residual intersections; see [8], [25], and [26] for the complete statement
of the progress that has been made to date on this project.) The progress that
has been made can be summarized as: “The best chance for understanding the
residual intersection of an ideal I occurs when I is in the linkage class of a complete
intersection (licci). The most studied examples of licci ideals are complete intersec-
tions of arbitrary grade, grade two perfect ideals, and grade three Gorenstein ideals.
If I is an ideal from the above list, then all f−residual intersections of I have been
resolved. If I is a grade two perfect ideal or if I is a grade three Gorenstein ideal,
then an exciting family of complexes ({Ci}, {Di}, respectively) has been associated
to I.” The preceding interpretation of history naturally leads one to formulate the
following project.

Goal 0.5. Find a family of complexes {Bi} which is associated to a complete
intersection and which is analogous to the families {Ci} and {Di}.
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We recall the properties of the families {Ci} and {Di}. In this discussion I is a
grade two perfect ideal or a grade three Gorenstein ideal and

Rn P−→ Rg X−→ R → (R/I) → 0

induces a minimal presentation of I. If I is a grade two perfect ideal, then n = g−1,
P is a g × n generic matrix, and the entries of X are maximal order minors of P .
If I is a grade three Gorenstein ideal, then n = g, P is a generic g × n alternating
matrix, and the entries of X are maximal order pfaffians of P . In order to simplify
the exposition we assume that the ring R is the polynomial ring k[P, Y ] where k is
a field and Y is a g × f generic matrix. Given this data with f ≥ grade I, let J be
the f−residual intersection (I1(XY ) : I), ρ be the map

ρ = [P Y ] : E = Rn ⊕ Rf −→ G = Rg,

and N be the integer
N = f + 1 − grade I.

For each integer i, one can form the complex Ci = Ci(ρ) (if I is a grade two perfect
ideal) or Di = Di(ρ) (if I is a grade three Gorenstein ideal). The families {Ci} and
{Di} satisfy the following properties.

(0.6) The complexes C0 and D0 each resolve R/J .

(0.7) The divisor class group of R/J is the infinite cyclic group Z[coker(ρ)].

(0.8) If i ≥ −1, then Ci and Di each resolve a representative of the class i[coker(ρ)]
from C` (R/J).

(0.9) The canonical class in the C` (R/J) is equal to N [coker(ρ)].

(0.10) The complexes {Ci} and {Di} satisfy

Ci ∼= (CN−i
)∗

[−s] and Di ∼= (DN−i
)∗

[−s]

for s = f .
(0.11) If M is a reflexive (R/J)−module of rank one and [M ] = i[coker(ρ)] in

C` (R/J) for some integer i, then M is a Cohen-Macaulay module if and
only if −1 ≤ i ≤ N + 1.

(0.12) If ρ̃ = [P Ỹ ], where Ỹ is the submatrix of Y which consists of columns 1 to
f − 1, then, for each integer i, there is a short exact sequence of complexes

0 −→ Ci(ρ̃ ) −→ Ci −→ Ci−1(ρ̃ )[−1] −→ 0 or 0 −→ Di(ρ̃ ) −→ Di −→ Di−1(ρ̃ )[−1] −→ 0.

In the present paper we need to know the properties of the complexes Ci and Di,
but not their exact description; however, a rough description can be given quickly.
The complex Ci, although well-known, does not seem to have a name. It is

· · · → D2G
∗ ⊗

g+i+2∧
E → D1G

∗ ⊗
g+i+1∧

E → D0G
∗ ⊗

g+i∧
E → S0G ⊗

i∧
E

→ S1G ⊗
i−1∧

E → S2G ⊗
i−2∧

E → . . .
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with S0G ⊗∧i
E in position i. (It appears that Buchsbaum and Eisenbud [10] or

Kirby [23] first considered the full family of complexes {Ci}. See [26, section 2] for
more details and history.) The family {Di} is defined in [26]. Roughly speaking, the
complex Di is obtained by pasting a graded strand of the algebra (S•G⊗∧•

E)/I
together with the dual of a different graded strand of (S•G ⊗ ∧•

E)/I. (In this
discussion S•G ⊗ ∧•

E is the Koszul algebra associated to the map ρ, and I is
a two generated of S•G ⊗ ∧•

E.) The position in Di where the two strands are
patched together involves pfaffians, of various sizes, of the alternating map which
corresponds to almost alternating map ρ.

At any rate, Goal 0.5 is completely accomplished in this paper. The complexes
that we define are best described if the data is given in terms of maps (rather than
matrices). Throughout this paper F and G are free R−modules of rank f and g,
respectively, and

(0.13) F
Υ−→ G

Ξ−→ R

are R−module homomorphisms. Given this data, we consider two families of com-
plexes: {Bi} and {bi}. The complexes {Bi} accomplish Goal 0.5. The complete
intersection I = I1(Ξ) is presented by

2∧
G

∧2 Ξ−−−→ G
Ξ−→ R −→ R

I
−→ 0,

and the role of the map ρ : E → G is played by

ρ = [
2∧

Ξ Υ]:
2∧

G ⊕ F → G.

The complexes Bi are defined in section 2. The properties of these complexes are
established in sections 3 and 4. A summary of the properties of the complexes
Bi (in the generic case) is contained in section 9. The non-generic case is treated
in section 10. In particular, property (0.12) is proved in Proposition 3.13 and
properties (0.6) – (0.11) for 2 ≤ g ≤ f may all be found in Theorem 9.2. It is worth
noting that our treatment of the Bi is relatively painless. (In particular, we have
separated our discussion of the Bi from our discussion of the more complicated
complexes bi.) For example, the proof of the acyclicity of the Bi is contained in
section 4, which is quite short. The proof proceeds by induction on f . Property
(0.12) shows that the complex Bi is the mapping cone of two complexes which are
built from a smaller f . The induction hypothesis yields that most of the homology
of Bi is trivial. The induction begins with f = 0. This situation has no meaning
in terms of either varieties of complexes or residual intersections; nonetheless, the
complex Bi is defined when f = 0 and it is the Buchsbaum-Eisenbud resolution
L1

i (Ξ) of the ith power of an ideal generated by a regular sequence. See Observation
3.10.

The expression “J is an f−residual intersection of I” has been given meaning
only when f ≥ grade I. On the other hand, the complexes Bi, Ci, and Di are
defined for all f ≥ 0. Furthermore, if (0.6) is used as a definition of J when 0 ≤ f ≤
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(grade I)−1, then many of the other properties hold. In particular, Propositions 9.6
and 3.13 show that properties (0.7) – (0.12) all hold when f = (grade I)−1. Huneke
and Ulrich [20] provide some explanation why properties (0.7), (0.9), and (0.11)
hold in the case of residual intersection (i.e., f ≥ grade I); however, a complete
understanding of which types of ideals give rise to a family of complexes analogous
to {Bi}, {Ci}, and {Di} is not yet available.

The second major impetus for this paper turns out to have been a false hope. The
Buchsbaum-Eisenbud resolution of R/J for f ≤ g (where J is defined in (0.1)) bears
some faint resemblance to the Bruns-Kustin-Miller resolution of R/J for g ≤ f . It
seemed reasonable to look for one big family of complexes which specialized to give
the Buchsbaum-Eisenbud resolution (and resolutions of divisors in this case) as well
as the Bruns-Kustin-Miller resolution (and resolutions of divisors in this case.) This
search led to the complex bi which resolves the divisor i[I ′] when f < g (in the
notation of (0.4)). However, now that we have the family {bi} it is impossible to
imagine one family of complexes which contains Bi when g ≤ f and also contains
bi when f < g. (In particular, most of the maps in Bi are linear; but half the maps
in bi are quadratic. See Figure 3.4 and Figure 6.2.) It is curious, however, that, in
some sense, the family {bi} satisfies properties which are similar to (0.6) – (0.12).
In the case of the bi there is no ideal I, there is no presentation map P of I, and
there is no interpretation in terms of residual intersection. Nonetheless, if N is set
equal to g − f − 1, s is set equal to g, and ρ is set equal to the map

(0.14) ρ = [1 ⊗ Υ∗Ξ∗(1) Υ∗ ⊗ 1] : (F ∗ ⊗
f−1∧

F ∗) ⊕ (G∗ ⊗
f∧

F ∗) → F ∗ ⊗
f∧

F ∗,

then, in Theorem 9.2, we prove that properties (0.6) – (0.11) hold for the family
{bi} in the generic case whenever g > f > 1. A version of (0.12) which holds for
the bi is established in Theorem 6.10.

A review of multilinear algebra is given in section 1. The complexes {Bi} and
{bi} are defined in sections 2 and 5, respectively. Elementary properties of the Bi

and the bi are recorded in sections 3 and 6, respectively. We establish the acyclicity
of the Bi and the bi (for the generic case) in sections 4 and 7, respectively. Section
4 is much shorter than section 7 mainly because the “base case” (f = 0) is already
well known for the Bi; but, the “base case” (f = g) is brand new for the bi. One of
the keys to the proof in section 7 is Theorem 7.22, which is a result about linkage
of Huneke-Ulrich deviation two Gorenstein ideals. Section 8 is concerned with the
bi in the “degenerate situation” g ≤ f − 1. It turns out that the bi are acyclic if
g = f − 1; but, that these complexes have nontrivial homology when g ≤ f − 2.
Section 9 summarizes what is known in the generic case. In section 10 we give
conditions under which specialization preserves the acyclicity of the complexes Bi

and bi, and we interpret the complexes {Bi} in the context of residual intersection.
The reader should consult [26] or [9] for any definitions or conventions that we

have neglected to record.

Section 1. Multilinear algebra and other preliminary concepts.

Fix a commutative noetherian ring R. All R−modules that we consider are
finitely generated. If M is an R−module, then M∗ = HomR(M,R) is the dual of
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M . Let E be a free R−module of rank e. We do not distinguish between E and its
double dual E∗∗. The symmetric algebra S•E, the exterior algebra

∧•
E, and the

divided power algebra D•E appear throughout the rest of the paper. (The formal
properties of these algebras and an expanded version of the following discussion
may be found in [11] and [26].) Each of these algebras A comes equipped with
a multiplication µ : A ⊗ A → A, and a co-multiplication ∆ : A → A ⊗ A. (The
symbol ⊗ always means tensor over R.) For each non-negative integer i there are
canonical perfect pairings

(1.1) � , � :
i∧

E∗ ⊗
i∧

E → R and � , � : SiE
∗ ⊗ DiE → R,

which are induced by co-multiplication followed by the evaluation map

< , > : E∗ ⊗ E → R.

Every free module that we consider is oriented. In other words, there are fixed
isomorphisms

[ ] :
e∧

E → R and [ ] :
e∧

E∗ → R

which are compatible with the perfect pairing of (1.1) in the sense that they satisfy

� x, y �= [x][y]

for all x ∈ ∧e
E∗ and y ∈ ∧e

E. Exterior multiplication followed by the orientation
isomorphism produces a further canonical perfect pairing

(1.2) � , � :
i∧

E ⊗
e−i∧

E → R.

If ρ : E → G is a map of free R−modules, then we refer to the differential algebras

(S•G ⊗
•∧

E , ∂ρ) and (D•G∗ ⊗
•∧

E , δρ)

as the Koszul algebra and the Eagon-Northcott algebra associated to ρ, respectively.
(Often we will write ∂ and δ in place of ∂ρ and δρ.) The differentials

∂ : SaG ⊗
b∧

E → Sa+1G ⊗
b−1∧

E and δ : DaG∗ ⊗
b∧

E → Da−1G
∗ ⊗

b−1∧
E

are well-known, but may also be found in section one of [26]. Recall that the perfect
pairings of (1.1) and (1.2) induce the perfect pairing

(1.3) � , � :

(
SaG ⊗

b∧
E

)
⊗
(

DaG∗ ⊗
e−b∧

E

)
→ R,
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which satisfies

(1.4) � ∂(x), y �= (−1)b−1 � x, δ(y) �

for all x ∈ (SaG⊗∧b
E) and y ∈ (Da+1G

∗⊗∧e−b+1
E). It follows that (1.3) induces

an isomorphism of complexes:
(1.5)

. . . −−−−→ SaG ⊗∧b
E

∂−−−−→ Sa+1G ⊗∧b−1
E −−−−→ . . .y y

. . . −−−−→
(
DaG∗ ⊗∧e−b

E
)∗ δ∗

−−−−→
(
Da+1G

∗ ⊗∧e−b+1
E
)∗

−−−−→ . . . .

We are particularly interested in studying the Koszul algebra and the Eagon-
Northcott algebra which are associated to the identity map on E∗. It is well-known
that almost all graded strands of these algebras are split exact. (The only exceptions
are

0 ∂−→ S0E
∗ ⊗

0∧
E∗ ∂−→ 0 and 0 δ−→ D0E ⊗

e∧
E∗ δ−→ 0.

Notice that we always consider SiE,
∧i

E, and DiE to be zero whenever i is
negative.) We now establish the existence of certain homotopies on these algebras
which have particularly nice properties. These homotopies are used in section
5 when we construct the complex bi.

Proposition 1.6. Let E be a free R−module of rank e, and let ∂ and δ represent
the differentials from the Koszul algebra and the Eagon-Northcott algebra associated
to the identity map on E∗. Then there exist a family of maps

s : SaE∗ ⊗
b∧

E∗ → Sa−1E
∗ ⊗

b+1∧
E∗ and t : DaE ⊗

b∧
E∗ → Da+1E ⊗

b+1∧
E∗

which has the following properties:

(a) s ∂ + ∂ s is the identity on SaE∗ ⊗∧b
E∗ for all integers a and b provided

(a, b) 6= (0, 0),
(b) sxs = 0 for any x ∈ S0E

∗ ⊗∧•
E∗,

(c) t δ + δ t is the identity on DaE ⊗∧b
E∗ for all integers a and b provided

(a, b) 6= (0, e),
(d) txt = 0 for any x ∈ D0E ⊗∧•

E∗, and
(e) if � , � is the perfect pairing of (1.3), then � s(x), y �= (−1)b �

x, t(y) � for all x ∈
(
SaE∗ ⊗∧b

E∗
)

and y ∈
(
Da−1E ⊗∧e−b−1

E∗
)
.

Proof. As soon as we have found a homotopy s which satisfies (a) and (b), we may
take (e) to be the definition of t. It is clear from (1.4) that t will then satisfy (c)
and (d).

We now define s. Let ε1, . . . , εe be a basis for E∗. Consider the basis element

x = εi1 . . . εia
⊗ εj1 ∧ . . . ∧ εjb

∈ SaE∗ ⊗
b∧

E∗
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where 1 ≤ i1 ≤ · · · ≤ ia ≤ e and 1 ≤ j1 < · · · < jb ≤ e. Define

s(x) =
{

0, if ia ≤ jb, or a = 0
εi1 . . . εia−1 ⊗ εia

∧ εj1 ∧ . . . ∧ εjb
, if jb < ia, or 0 = b < a.

It is apparent that (b) holds. To show (a) we consider two cases. If ia ≤ jb or
0 = a < b, then ∂ s(x) = 0 and s ∂(x) = x. If jb < ia or 0 = b < a, then

∂ s(x) = x +
b∑

k=1

(−1)kεi1 . . . εia−1εjk
⊗ εia

∧ εj1 ∧ . . . ∧ ε̂jk
∧ . . . ∧ εjb

, and

s ∂(x) =
b∑

k=1

(−1)k+1εi1 . . . εia−1εjk
⊗ εia

∧ εj1 ∧ . . . ∧ ε̂jk
∧ . . . ∧ εjb

. �

The building blocks of the complexes Bi and bi are Schur functors. We find the
following notation to be most convenient.

Definition 1.7. Let E be a free R−module. If a and b are integers, then

(a) Lb
aE = Ker(∂ : SaE ⊗∧b

E → Sa+1E ⊗∧b−1
E), and

(b) Kb
aE = Ker(δ : DaE ⊗∧b

E∗ → Da−1E ⊗∧b−1
E∗),

where (S•E ⊗∧•
E, ∂) is the Koszul algebra associated to the identity map on E,

and (D•E⊗∧•
E∗, δ) is the Eagon-Northcott algebra associated to the identity map

on E∗.

It follows from Proposition 1.6 that

Lb
0E =

{
R, if b = 0
0, otherwise,

and Ke
aE =

{
R, if a = 0
0, otherwise.

Furthermore, we also see that

Sa−2E ⊗
b+2∧

E
∂−→ Sa−1E ⊗

b+1∧
E

∂−→ Lb
aE → 0

is exact provided (a, b) 6= (0, 0) and (a, b) 6= (1,−1), and

(1.8) Da+2E ⊗
b+2∧

E∗ δ−→ Da+1E ⊗
b+1∧

E∗ δ−→ Kb
aE → 0

is exact provided (a, b) 6= (0, e) and (a, b) 6= (−1, e − 1). The module Lb
aE of

Definition 1.7 is exactly the same as the the Schur functor Lb+1
a E which is defined

on page 260 of [11]. In more modern terminology, for example [1, Definition II.1.3],
if p and q are positive integers, then Lq

pE is the Schur functor LλE of E with respect
to the partition

λ = (q, 1, . . . , 1︸ ︷︷ ︸
p−1 times

).
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The partition λ is represented by the hook

q boxes︷ ︸︸ ︷
��� · · ·��

p−1 boxes



��
...
��

.

The module Kb
aE of Definition 1.7 is exactly the same as the module Kb

aE of [8];
furthermore, a quick comparison of (1.8) and (1.5) yields that

(1.9) (Kb
aE)∗ ∼= Le−b−1

a+1 E∗

for all integers a and b provided (a, b) 6= (0, e) and (a, b) 6= (−1, e− 1). At any rate,
Kb

aE and Lb
aE are both free R−modules, with

(1.10)

rankLb
aE =

(
e + a − 1

a + b

)(
a + b − 1

a − 1

)
provided 1 ≤ a and 0 ≤ b ≤ e, and

(1.11)

rankKb
aE =

(
e + a − 1 − b

a

)(
e + a

b

)
provided 0 ≤ a and 0 ≤ b ≤ e − 1.

The isomorphisms of (1.9) are obviously canonical. However, we will, upon
occasion, desire a more explicit version of these maps. To that end, consider s and
t to be homotopies with the properties listed in Proposition 1.6. One quickly sees
that

(1.12) SaE∗ ⊗
b∧

E∗ = Lb
aE∗ ⊕ sLb−1

a+1E
∗ and DaE ⊗

b∧
E∗ = Kb

aE ⊕ tKb−1
a−1E

for all integers a and b. If (a, b) 6= (0, e) and (a, b) 6= (−1, e − 1), then we see that
the isomorphism of (1.9) is actually induced by the perfect pairing

(1.13) Le−b−1
a+1 E∗ ⊗ Kb

aE → R

which sends x ⊗ y to � s(x), y �= ± � x, t(y) � where � , � is the perfect
pairing of (1.3). The following reformulation of (1.12) will be used later in the
paper. If a and b are integers with (a, b) 6= (−1, 1), then

(1.14) 0 → Lb
aE

incl−−→ SaE ⊗
b∧

E
∂id−−→ Lb−1

a+1E → 0

is a split exact sequence of free R−modules.
We conclude our discussion of multilinear algebra by recording a few observations

about the interaction between multiple Koszul and Eagon-Northcott maps. These
observations are used when we see that the maps in the complexes Bi and bi are
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well defined. If ρ : E → G and σ : F → G are maps of free R−modules, then it is
easy to see that the diagrams

(1.15)

SaG ⊗∧b
E ⊗∧c

F
∂σ−−−−→ Sa+1G ⊗∧b

E ⊗∧c−1
F

∂ρ

y ∂ρ

y
Sa+1G ⊗∧b−1

E ⊗∧c
F

∂σ−−−−→ Sa+2G ⊗∧b−1
E ⊗∧c−1

F

and

(1.16)

DaG∗ ⊗∧b
E ⊗∧c

F
δσ−−−−→ Da−1G

∗ ⊗∧b
E ⊗∧c−1

F

δρ

y δρ

y
Da−1G

∗ ⊗∧b−1
E ⊗∧c

F
δσ−−−−→ Da−2G

∗ ⊗∧b−1
E ⊗∧c−1

F

both commute. There isn’t very much to check because diagram (1.16) is the dual
of one of the diagrams of the form of (1.15). (The vertical maps in (1.15) really
are ∂ρ ⊗1. The “⊗1” doesn’t make the notation any more clear and would cause
a headache if we insisted on using it in the horizontal maps of (1.15). Therefore,
we often omit it. Similarly, when we have homotopies and differentials interacting,
we will often write s and t in place of s ⊗ 1 and t ⊗ 1. See Remark 5.11 (b).)
Furthermore, if ρ : F → R and σ : F → G are maps of free R−modules, then the
diagrams

(1.17)

SaG ⊗∧c
F

∂σ−−−−→ Sa+1G ⊗∧c−1
F

∂ρ

y ∂ρ

y
SaG ⊗∧c−1

F
∂σ−−−−→ Sa+1G ⊗∧c−2

F

and

(1.18)

DaG∗ ⊗∧c
F

δσ−−−−→ Da−1G
∗ ⊗∧c−1

F

∂ρ

y ∂ρ

y
DaG∗ ⊗∧c−1

F
δσ−−−−→ Da−1G

∗ ⊗∧c−2
F

both commute (up to sign). The second diagram is the dual of one of the diagrams
of the form of (1.17) because the Koszul algebra (S•R ⊗ ∧•

F, ∂ρ) is exactly the
same as the Eagon-Northcott algebra (D•R∗ ⊗∧•

F, δρ).
If Υ: F → G is a map of free R−modules, then It(Υ) is the R−ideal generated

by the t × t minors of some matrix representation Y of Υ. (The ideal It(Υ) does
not depend on the choice of Y .) We take I0(Υ) = R and It(Υ) = (0) for t >
min{rankF, rankG}.

The grade of a proper ideal I in a ring R is the length of the longest regular
sequence on R in I. An R−module M is called perfect if its projective dimension
is equal to the grade of its annihilator. An R−ideal I is called perfect if R/I is a
perfect R−module. The following result, which may be proved directly or deduced
from [26, Corollary 1.26] together with [9, Proposition 16.33], is an example of how
the notion of perfection imitates the notion of Cohen-Macaulay.
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Observation 1.19. If I is a perfect ideal in R and M is a non-zero finitely gen-
erated (R/I)−module with pdR M ≤ grade I, then M is a perfect R−module and
every regular sequence on R/I is a regular sequence on M . �

Section 2. The complex Bi
.

Throughout this section the following data is in effect.

Data 2.1. The free R−modules F and G have rank f ≥ 0 and g ≥ 1, respectively,

F
Υ−→ G and G

Ξ−→ R

are R−module homomorphisms, Kb
a means Kb

aG∗, and Lb
a means Lb

aG.

For each integer i, we consider a bicomplex Bi(Ξ,Υ). The complex Bi(Ξ,Υ), which
was advertised below (0.13), is the total complex of Bi(Ξ,Υ). We write Bi and Bi

in place of Bi(Ξ,Υ) and Bi(Ξ,Υ) when it is clear what data is being used. We
begin by exhibiting the modules which comprise Bi.

(2.2) The portrait of Bi:

Kg−1
f−g−i ⊗

∧f F→. . .→Kg−1
0 ⊗∧g+i F→∧i+g−1 F→Lg−1

1 ⊗∧i−1 F→. . .→Lg−1
i ⊗∧0 F

↓ ↓ ↓ ↓ ↓
Kg−2

f−g−i ⊗
∧f F→. . .→Kg−2

0 ⊗∧g+i F→∧i+g−2 F→Lg−2
1 ⊗∧i−1 F→. . .→Lg−2

i ⊗∧0 F

↓ ↓ ↓ ↓ ↓
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

↓ ↓ ↓ ↓ ↓
K1

f−g−i ⊗
∧f F→. . .→ K1

0 ⊗
∧g+i F → ∧i+1 F → L1

1 ⊗
∧i−1 F →. . .→ L1

i ⊗
∧0 F

↓ ↓ ↓ ↓ ↓
K0

f−g−i ⊗
∧f F→. . .→ K0

0 ⊗
∧g+i F → ∧i F → L0

1 ⊗
∧i−1 F →. . .→ L0

i ⊗
∧0 F

The module
∧i

F is considered to be Bi
0 i. In other words,

(2.3)

Bi
a b =


La

i−b ⊗
∧b

F, if 0 ≤ a ≤ g − 1 and 0 ≤ b ≤ i − 1,∧a+i
F, if 0 ≤ a ≤ g − 1 and b = i,

Ka
b−i−1 ⊗

∧b+g−1
F, if 0 ≤ a ≤ g − 1 and i + 1 ≤ b ≤ f − g + 1.

We take Bi
a b to be 0 if

(2.4) a ≤ −1 or g ≤ a or b < min {0, i} or max {i, f − g + 1} < b.

The horizontal maps in
(
Bi, d

)
are given by :

(2.5)
Kb

a ⊗∧c
F

d
– – – – – → Kb

a−1 ⊗
∧c−1

F
∩q ∩q

DaG∗ ⊗∧b
G ⊗∧c

F
δΥ−−−−−−−→ Da−1G

∗ ⊗∧b
G ⊗∧c−1

F,
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(2.6) Kb
0 ⊗

g+i∧
F =

b∧
G ⊗

g+i∧
F

1⊗∆−−−→
b∧

G ⊗
g−b∧

F ⊗
i+b∧

F

1⊗∧g−b Υ⊗1−−−−−−−−→
b∧

G ⊗
g−b∧

G ⊗
i+b∧

F
µ⊗1−−→

i+b∧
F,

(2.7)
i+b∧

F
∆−→

b+1∧
F ⊗

i−1∧
F

∧b+1 Υ−−−−→
b+1∧

G ⊗
i−1∧

F
∂id ⊗1−−−−→ Lb

1 ⊗
i−1∧

F, and

(2.8)
Lb

a ⊗∧c
F

d
– – – – – → Lb

a+1 ⊗
∧c−1

F
∩q ∩q

SaG ⊗∧b
G ⊗∧c

F
∂Υ−−−−−−−→ Sa+1G ⊗∧b

G ⊗∧c−1
F.

The induced maps of (2.5) and (2.8) exist because of the commutative diagrams
(1.16) and (1.15). The vertical maps in

(
Bi, d

)
are given by:

(2.9)

Kb
a ⊗∧c

F ⊆ DaG∗ ⊗∧b
G ⊗∧c

F
p |
p d 1⊗∂Ξ ⊗1 |
↓ ↓

Kb−1
a ⊗∧c

F ⊆ DaG∗ ⊗∧b−1
G ⊗∧c

F,

(2.10)

∧c
F

∂ΞΥ

y∧c−1
F,

and

(2.11)

Lb
a ⊗∧c

F ⊆ SaG ⊗∧b
G ⊗∧c

F
p |
p d 1⊗∂Ξ ⊗1 |
↓ ↓

Lb−1
a ⊗∧c

F ⊆ SaG ⊗∧b−1
G ⊗∧c

F.

The induced maps of (2.9) and (2.11) exist because of the commutative diagrams
(1.18) and (1.17). In Proposition 2.18 we prove that Bi is a complex. The next
result is important in its own right (compare with (0.10)) and it cuts the proof of
Proposition 2.18 in half.

Proposition 2.12. If the data of (2.1) is adopted, then Bf−g+1−i ∼= (Bi)∗[−f ].

Proof. A routine calculation using (2.3), (2.4), and (1.9) shows that

Bf−g+1−i
a b

∼= (Bi
g−1−a f−g+1−b

)∗
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is a module isomorphism for all integers a, b, and i. It follows that

(2.13) Bf−g+1−i
j

∼= (Bi
f−j

)∗
is a module isomorphism for all integers i and j. The duality among the vertical
maps follows from the self duality of the Koszul complex. In order to compare the
horizontal maps, we fix a pair of families of homotopies:

s : SaG ⊗
b∧

G → Sa−1G ⊗
b+1∧

G and t : DaG∗ ⊗
b∧

G → Da+1G
∗ ⊗

b+1∧
G

which satisfy the properties of Proposition 1.6.
If a and b are integers with 0 ≤ b ≤ g − 1 and 1 ≤ a, then the diagram

(2.14)

Lb
a ⊗∧c

F
∂Υ−−−−→ Lb

a+1 ⊗
∧c−1

F

∼=
y ∼=

y(
Kg−b−1

a−1 ⊗∧f−c
F
)∗ (δΥ)∗−−−−→

(
Kg−b−1

a ⊗∧f−c+1
F
)∗

,

with vertical maps given in (1.13) and (1.2), commutes because

(2.15) � ∂Υ x, t(y) �= ± � x, t δΥ y �

for all x ∈ Lb
a ⊗∧c

F and y ∈ Kg−b−1
a ⊗∧f−c+1

F. Indeed, (1.4) and Proposition
1.6 (c) yield that the left side of (2.15) is equal to

± � x, δΥ t(y) �= ± � x, (δid t + t δid) δΥ t(y) �
= ± � ∂id x, t δΥ t(y) � ± � x, t δid δΥ t(y) � .

The domain of x guarantees that ∂id x = 0. We know, from (1.16), that the maps
δid and δΥ commute; furthermore, δid t(y) = y − t δid(y) = y. (The last equality is
due to the domain of y.)

If 1 ≤ i and 0 ≤ b ≤ g − 1, then we prove that

(2.16)

∧i+b
F

d−−−−→ Lb
1 ⊗

∧i−1
F

∼=
y ∼=

y(∧f−i−b
F
)∗ d∗

−−−−→
(
Kg−b−1

0 ⊗∧f−i+1
F
)∗

commutes by showing that

(2.17) � sdx, y �= ±[x ∧ dy]

for all x ∈ ∧i+b
F and y ∈ ∧g−b−1

G ⊗∧f−i+1
F. Use (2.7) to see that

sdx = s ∂id

(
b+1∧

Υ

)
∆x =

(
b+1∧

Υ

)
∆x.
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(The last equality used the hypothesis that 1 ≤ b+1.) One should probably use bases
to establish (2.17). When one does this, it is soon clear that only one situation is
interesting; namely: x = w∧x′ and y = z⊗w∧y′ for some w ∈ ∧b+1

F , x′ ∈ ∧i−1
F ,

y′ ∈ ∧f−b−i
F , and z ∈ ∧g−b−1

G. In this case,

� sdx, y �=

[(
b+1∧

Υ

)
w ∧ z

]
[x′ ∧ w ∧ y′] and

[x ∧ dy] =

[
z ∧

(
b+1∧

Υ

)
w

]
[w ∧ x′ ∧ y′] . �

Proposition 2.18. If the data of (2.1) is adopted, then Bi is a complex.

Proof. It suffices to prove that Bi is a bicomplex. Most of the maps of Bi are in-
duced by Koszul algebra maps or Eagon-Northcott algebra maps. Since the graded
strands of these algebras are complexes, we know that all of the columns of Bi are
complexes and all of the rows of Bi are complexes except, possibly, near the ith

position. The sequence

(2.19)
i+b∧

F → Lb
1 ⊗

i−1∧
F → Lb

2 ⊗
i−2∧

F

is a complex because ∆ is co-associative and the composition

2∧
F

∆−→ F ⊗ F
µ−→ S2F

is zero. The sequence

Kb
1 ⊗

g+i+1∧
F → Kb

0 ⊗
g+i∧

F →
i+b∧

F

is also a complex because we know, from Proposition 2.12, that it is the dual of the
complex which is obtained from (2.19) when i is replaced by f − g + 1 − i and b is
replaced by g − b − 1. The composition

Kb
0 ⊗

g+i∧
F

d−→
i+b∧

F
d−→ Lb

1 ⊗
i−1∧

F

with 1 ≤ i factors through the composition

b∧
G⊗

g+i∧
F

1⊗∆−−−→
b∧

G⊗
g+1∧

F ⊗
i−1∧

F
1⊗∧g+1 Υ⊗1−−−−−−−−−→

b∧
G⊗

g+1∧
G⊗

i−1∧
F = 0;

and therefore is zero.
The squares in Bi of the form

Lb
a ⊗∧c

F −−−−→ Lb
a+1 ⊗

∧c−1
Fy y

Lb−1
a ⊗∧c

F −−−−→ Lb−1
a+1 ⊗

∧c−1
F
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commute because, as we observed in (1.15), the Koszul differentials ∂Υ and ∂Ξ

commute. The proof of Proposition 3.2 in [8] explains why the squares

Kb
0 ⊗∧g+i

F −−−−→ ∧i+b
Fy y

Kb−1
0 ⊗∧g+i

F −−−−→ ∧i+b−1
F

commute (up to sign). The duality guaranteed by Proposition 2.12 yields that the
other two types of squares from Bi also commute (up to sign). �

Section 3. Elementary facts about the complexes Bi
.

In this section we collect a few facts which can be read directly from the definition
of the complex Bi. We begin by recording some qualitative data about the length,
Betti numbers, and twists of each Bi. For example, if g−1 ≤ f and f −g+2 ≤ i ≤
f + 1, then a quick look at (2.2) shows that Bi

j 6= 0 if and only if 0 ≤ j ≤ g + i− 2.
One can use (2.13) to learn similar information for −g ≤ i ≤ −1. The best way to
record the length of Bi is by using a graph.

Observation 3.1. If the notation of (2.1) is adopted, then the module Bi
j 6= 0 if

and only if there is a dot at the point (i, j) in Figure 3.2 or Figure 3.3.

Pairs (i, j) with Bi
j 6= 0 when g − 1 ≤ f :

i

• · · · · · · · · · • +∞
..
.

..

.
..
.

..

.
..
.

• · · · · · · · · · • f + 1

. . .
..
.

..

.
..
.

• · · · • f − g + 2

.

..
.
..

.

..
• · · · • −1

..

.
..
.

..

.
. . .

• · · · · · · · · · • −g

..

.
..
.

..

.
..
.

..

.
• · · · · · · · · · • −∞

j f + g − 1 f 0 1− g

x←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.2

The betti numbers of Bi may be easily read from (1.10) and (1.11). We next
describe the twists in the complex Bi. In the notation of (2.1) consider R to be a
graded ring and view Ξ and Υ as matrices of one forms from R. Each differential



COMPLEXES WHICH ARISE FROM A MATRIX AND A VECTOR 17

Pairs (i, j) with Bi
j 6= 0 when f ≤ g − 1:

i

• · · · · · · · · · · · · · · · • +∞
..
.

..

.
..
.

..

.
..
.

..

.
..
.

• · · · · · · · · · · · · · · · • f + 1

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

• · · · · · · · · · • 1

• · · · • 0
.
.
.

.

.

.
.
.
.

• · · · • f − g + 1

• · · · · · · · · · • f − g

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

• · · · · · · · · · · · · · · · • −g

..

.
..
.

..

.
..
.

..

.
..
.

..

.

• · · · · · · · · · · · · · · · • −∞
j f + g − 1 g − 1 f 0 f − g + 1 1− g

x←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.3

The degree of the maps in Bi:

Kg−1 f
f−g−i

1−−−−−→ .
1−−−−−→ Kg−1 g+i

0
1−−−−−→ ∧i+g−1 g−−−−−→ Lg−1 i−1

1
1−−−−−→ .

1−−−−−→ Lg−1 0
i

1

y 1

y 2

y 1

y 1

y
Kg−2 f

f−g−i
1−−−−−→ .

1−−−−−→ Kg−2 g+i
0

2−−−−−→ ∧i+g−2 g−1−−−−−→ Lg−2 i−1
1

1−−−−−→ .
1−−−−−→ Lg−2 0

i

1

y 1

y 2

y 1

y 1

y
..
.

..

.
..
.

..

.
..
.

1

y 1

y 2

y 1

y 1

y
K1 f

f−g−i
1−−−−−→ .

1−−−−−→ K1 g+i
0

g−1−−−−−→ ∧i+1 2−−−−−→ L1 i−1
1

1−−−−−→ .
1−−−−−→ L1 0

i

1

y 1

y 2

y 1

y 1

y
K0 f

f−g−i
1−−−−−→ .

1−−−−−→ K0 g+i
0

g−−−−−→ ∧i 1−−−−−→ L0 i−1
1

1−−−−−→ .
1−−−−−→ L0 0

i

Figure 3.4

map in Bi can be viewed as a matrix of homogeneous forms from R. In this
language, maps (2.8), (2.9), and (2.11) are matrices of linear forms; map (2.10) is a
matrix of quadratic forms; map (2.6) is a matrix of forms of degree g − b; and map
(2.7) is a matrix of forms of degree b+1. In Figure 3.4 we have recorded the degree
of the entries of each map from Bi. For space reasons we have written Lb c

a , Kb c
a ,

and
∧c in place of Lb

a ⊗
∧c

F , Kb
a ⊗
∧c

F , and
∧c

F , respectively. It is not difficult
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to translate Figure 3.4 into the usual notation for twists. For example, if 0 ≤ i,
g + i ≤ f , and 2 ≤ g, then Bi

0 = L0 0
i = Rn for n =

(
g+i−1

i

)
and the summand

K1
0 ⊗∧g+i

F of Bi
i+2 is Rm(−(g + i + 1)) for m = g

(
f

g+i

)
.

Next, we record the zeroth homology of those complexes Bi which begin at
position zero. The following notation is in effect.

Notation 3.5. Retain the data of (2.1). Let J (Ξ,Υ) be the ideal I1(ΞΥ) + Ig(Υ)
of R, A(Ξ,Υ) be the ring R/J (Ξ,Υ), and M(Ξ,Υ) be the R−module presented by

[∂Ξ Υ]:
2∧

G ⊕ F −→ G.

When there is no ambiguity, we write A, J , and M in place of A(Ξ,Υ), J (Ξ,Υ),
and M(Ξ,Υ). If g ≤ f , then J is one of the ideals “J” from (0.1); otherwise, J is
simply equal to I1(ΞΥ). It is easy to see that M is actually an A−module. There
are several interpretations of the A−module M .

Observation 3.6. Adopt the notation of (3.5).
(a) There is a surjection from M onto the A−ideal

I1(Ξ) + J
J .

(b) Let ϕ1, . . . , ϕf and γ1, . . . , γg be bases for F and G, respectively; and let X
and Y be the matrices of Ξ and Υ with respect to these bases. If g − 1 ≤ f ,
then there is a surjection from M onto the A−ideal

Ig−1(columns 1 to g − 1 of Y ) + J
J .

(c) If grade I1(Ξ) = g, then M ∼= I1(Ξ)/I1(ΞΥ).

Note. If the data of (2.1) is sufficiently general (see Theorem 9.2 (a) and (10.16)),
then the surjections of (a) and (b) are isomorphisms.

Observation 3.7. In the notation of (3.5) the following statements hold.
(a)

H0(Bi) =
{

A, if i = 0, or if f − g + 1 ≤ i ≤ −1, and
Si(M), if i > 0.

(b) Let γ be any element of G, Υγ : F ⊕ R → G be the extension of Υ which

sends
[

0

1

]
to γ, and Jγ be the ideal J (Ξ,Υγ)/J of A. Then there is an

R−module surjection H0(B−1) � Jγ .

Note. If γ = γg, in the notation of Observation 3.6 (b), then the ideal Jγ of
Observation 3.7 (b) is

(3.8)
(xg) + Ig−1(rows 1 to g − 1 of Y ) + J

J .
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If the data of (2.1) is sufficiently general (see Theorems 9.2 (a) and 9.3 (d), Remark
9.5 (a), and (10.15)), then the surjection of (b) is an isomorphism.

Proof. The proof of (a) is straightforward. We prove (b). The R−module H0(B−1)
is presented by

[
δΥ Ξ ⊗ 1 0
0 −µ(1 ⊗∧g−1 Υ) ΞΥ

]
:

(
G∗ ⊗

g∧
F

)
⊕
(

G ⊗
g−1∧

F

)
⊕ F −→

g−1∧
F ⊕ R,

and the map
∧g−1

F ⊕ R → Jγ , which is given by

[
x
r

]
7−→

[
γ ∧ (

g−1∧
Υ)(x)

]
+ rΞ(γ),

induces the desired surjection. �

It is important, for the purposes of induction, that we understand the complex
Bi whenever either of the parameters f or g is small.

Example 3.9. If g = 1, then Bi is the bottom row of Bi for all integers i.
Furthermore, in this case, Bi is the usual Koszul complex associated to the map
Υ: F → R.

If f = 0, then the complex Bi is also well understood. Indeed, if 1 − g ≤ i ≤ 0,
then Bi consists of the module R concentrated in position zero. Furthermore, if
i ≥ 1, then Bi consists of the right most column from Bi and it is essentially the
same as the complex L1

i (Ξ) of [11, Corollary 3.2]. (Srinivasan [30, Theorem 2.1]
referred to L1

i (Ξ) as Li(Ξ), and she proved that L1
i (Ξ) admits the structure of a

DG−algebra.) At any rate, L1
i (Ξ) is

0 → Lg−1
i → · · · → L0

i︸ ︷︷ ︸
Bi

= SiG
Si(Ξ)−−−→ R,

and we draw the following conclusion.

Observation 3.10. Adopt the data of (2.1) with f = 0. If grade I1(Ξ) = g, then
Bi is a resolution of Si(I1(Ξ)) ∼= (I1(Ξ))i for all i ≥ 1.

One facet of the proof that the Bi are acyclic (see section 4) entails inverting a
minor of Ξ or Υ. We determine the effect of such localizations in the following two
examples.

Example 3.11. If the ring R in the notation of (3.5) is local and I1(Ξ) = R, then
H0(Bi) = R/J for all i ≥ 0. Indeed, one can choose bases for F and G so that the
matrix of Ξ is [ 1 0 . . . 0 ] .

Example 3.12. In the notation of (3.5), suppose that T is an indeterminate over
R. Let

X = [Ξ T ] , Y =
[

Υ 0

0 1

]
, and M = M(X ,Y).
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It is clear that the R[T ]−ideal J (X ,Y) is equal to J + (T ). Furthermore, if the
R−module M is viewed as an R[T ]−module by way of the ring homomorphism

R[T ] → R[T ]/(T ) = R,

then M and M are isomorphic as R[T ]−modules. In particular, if pdR Si(M) < ∞
for some i ≥ 0, then pdR[T ] Si(M) = pdR Si(M) + 1.

We conclude this section by observing that the complex Bi is the mapping cone
of two complexes constructed from smaller data; thereby showing that the family
{Bi} satisfies a property analogous to (0.12). In the next result we write Ã, B̃, B̃,
J̃ , and M̃ for A(Ξ, Υ̃), B(Ξ, Υ̃), B(Ξ, Υ̃), J (Ξ, Υ̃), and M(Ξ, Υ̃).

Proposition 3.13. In the notation of (2.1), let F = F̃ ⊕ Rϕ for some free
R−module F̃ of rank f − 1, and let Υ̃ be the restriction of Υ to F̃ . Then, for
every integer i, there is a short exact sequence of complexes

(3.14) 0 → B̃i → Bi → B̃i−1[−1] → 0;

in particular, there is a long exact sequence of homology
(3.15)

· · · → Hj+1(Bi) → Hj(B̃i−1) → Hj(B̃i) → Hj(Bi) → Hj−1(B̃i−1) → . . . .

Furthermore, the sequences
(3.16)

H1(B̃i) → H1(Bi) → Si−1(M̃)
Υ(ϕ)−−−→ Si(M̃) → Si(M) → 0, for i ≥ 1, and

(3.17) H1(B̃0) → H1(B0) → H0(B̃−1) → J /J̃ → 0

are exact, where S0(M̃) is taken to mean Ã.

Proof. Recall the definition of Bi
a b given in (2.3). For each triple of integers (a, b, i),

the decomposition
∧c

F =
∧c

F̃ ⊕
(∧c−1

F̃ ⊗ Rϕ
)

yields a short exact sequence of
modules

0 → B̃i
a b → Bi

a b → B̃i−1
a b−1 → 0.

It is not difficult to check that these exact sequences induce the short exact sequence
(3.14); and therefore, the long exact sequence (3.15). If 0 ≤ i, then the module
H0(Bi) has been identified in Observation 3.7. The exactness of (3.17) follows
immediately. The exactness of (3.16) is established as soon as one checks that the
connecting homomorphism

Si−1(M̃) ∼= H0(B̃i−1) → H0(B̃i) ∼= Si(M̃)

is multiplication by the image of the element Υ(ϕ) in the symmetric algebra SÃ
• (M̃). �

Remark. In our proof of Proposition 3.13 the exactness of (3.17) was established
by formal considerations. However, we could have appealed to Observation 3.7 (b)
in order to produce a surjection H0(B̃−1) � J /J̃ because, if one starts with the
map Υ̃: F̃ → R and one chooses γ to be the element Υ(ϕ) of G, then the ideal Jγ

of Observation 3.7 (b) is J /J̃ .
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Section 4. Acyclicity of Bi
in the generic case.

Notation 4.1. Let f ≥ 0 and g ≥ 1 be integers, R0 be a commutative noetherian
ring, X1×g = (xi) and Yg×f = (yij) be matrices of indeterminates, and R be
the polynomial ring R0[X,Y ]. View Y : F → G and X : G → R as maps of free
R−modules. Let B represent B(X,Y ), J be the R−ideal I1(XY ) + Ig(Y ), and A
be the quotient R/J .

Theorem 4.2. Adopt the notation of (4.1). If min{−1, f − g + 1} ≤ i, then Bi is
acyclic and H0(Bi) is isomorphic to an ideal of A.

Proof. If f−g+1 ≤ i ≤ 0, then Bi is the Koszul complex associated to XY : F → R.
Since the entries of the matrix XY form a regular sequence whenever f ≤ g, we
conclude that Bi is acyclic and H0(Bi) ∼= A. Henceforth, we assume that either
0 ≤ i, or else, that i = −1 and g − 1 ≤ f . The proof proceeds by induction on f .
Observation 3.10 takes care of the case f = 0; henceforth, we assume that 1 ≤ f.

Let Ỹ represent the submatrix of Y which consists of columns 1 to f − 1,

B̃i = Bi(X, Ỹ ), J̃ = I1(XỸ ) + Ig(Ỹ ), Ã = R/J̃ ,

Ĩ be the Ã−ideal generated by I1(X), and z be the element
∑g

i=1 xiyif of Ĩ. The
induction hypothesis guarantees that B̃i is acyclic for all i ≥ −1. Therefore, the
long exact sequence (3.15) yields Hj(Bi) = 0 for all i and j with j ≥ 2 and
i ≥ 0. Further observations are necessary before we consider H1(Bi). The following
statements hold.

(4.3) The R−ideal J̃ is perfect of grade f − 1.
(4.4) The Ã−ideal Ĩ has positive grade.
(4.5) The element z is regular on Ã.

Indeed, if f − 1 < g, then J̃ is generated by a regular sequence; and if g ≤ f − 1,
then a proof of (4.3) is contained in [8, Proposition 4.2], see (0.2). Assertion (4.4)
follows from (4.3) because f ≤ grade

(
I1(X) + Ig(Ỹ )

)
. Hochster’s notion of general

grade reduction [14] ensures (4.5).
We saw in Observations 3.7 (a) and 3.6 (a) that there is an Ã−module surjection

(4.6) H0(B̃i) = Si(M̃) � Ĩi

for all i ≥ 0. Since Ĩ has positive grade (by (4.4)), and H0(B̃i) is isomorphic to
an ideal of Ã (by induction), we conclude that (4.6) is an isomorphism. When the
isomorphism of (4.6) is applied to the exact sequence (3.16) the image of “Υ(ϕ)”
in Ĩ is z; consequently,

0 = H1(B̃i) → H1(Bi) → Ĩi−1 z−−→ Ĩi

is exact. Use (4.5) in order to conclude that H1(Bi) = 0 for all i ≥ 1.
The ideal J also contains z; consequently, the same argument as above yields

that the surjection H0(B̃−1) � J /J̃ of (3.17) is also an isomorphism. It follows
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that H1(B0) = 0; and therefore, Bi is acyclic for all i ≥ 0. If g − 1 ≤ f , then the
complex Bf−g+2 has length f (see Figure 3.2), and it resolves a prefect R−module
of projective dimension f ; thus, B−1 ∼= (Bf−g+2

)∗ [−f ] is also acyclic.
It remains to show that H0(Bi) is isomorphic to an ideal of A. Fix i ≥ 1. It is

easy to see that the A−module H0(Bi) has rank one. (See [9, Section 16.A] or [26,
Observation 1.27] for a discussion of rank.) Indeed, if P is an associated prime of
A, then I1(X)A * P (see (4.4)); hence, Example 3.11 shows that H0(Bi)P = AP .
We next show that H0(Bi) is a torsion-free A−module. The annihilator of H0(Bi)
contains the ideal J , which is a perfect ideal of grade f . Since Bi is acyclic, we
know, from Observation 3.1, that

f ≤ pdR H0(Bi) ≤ f + g − 1.

Let j ≥ f + 1 be fixed, and let Fj be the radical of the R−ideal generated by

(4.7) {x ∈ R | pdRx
H0(Bi)x < j}.

Example 3.11 shows that I1(X) ⊆ Fj . If j ≤ g − 1, then

j + 1 ≤ g ≤ gradeFj .

If g ≤ j ≤ f + g − 1, then a quick look at Example 3.12 shows that I1(X) +
If+g−j(Y ) ⊆ Fj ; and therefore,

(4.8) j + 2 ≤ g + 2(j − g + 1) ≤ g + (j − f + 1)(j − g + 1) ≤ gradeFj .

In any event, we see that j + 1 ≤ gradeFj for all j with f + 1 ≤ j ≤ f + g − 1.
It follows (see, for example, [26, Proposition 1.25]) that H0(Bi) is a torsion-free
A−module. We conclude that the surjection

(4.9) H0(Bi) � I1(X)iA

is an isomorphism. Finally, we consider the case i = −1 and g − 1 ≤ f . We have
seen that H0(Bf−g+2) is a perfect R−module of projective dimension f and

(4.10) H0(B−1) = Extf
R(H0(Bf−g+2), R).

It follows that H0(B−1) is a torsion-free A−module. (See, for example, Observation
1.19.) If P ∈ Ass(A), then Example 3.11 shows that H0(Bf−g+2)P is obtained from
RP by modding out a regular sequence of length f ; thus, (4.10) yields that H0(B−1)
has rank one. Recall, from (3.8), that there is an A−module surjection

(4.11) H0(B−1) � (xg) + Ig−1(rows 1 to g − 1 of Y ) + I1(XY )
I1(XY ) + Ig(Y )

.

Since it is easy to see that the A−ideal on the right side of (4.11) has positive grade,
it follows that (4.11) is an isomorphism. �
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Section 5. The complex bi
.

Once again, we begin with the data of (0.13).

Data 5.1. The free R−modules F and G have rank f ≥ 1 and g ≥ 0, respectively,

F
Υ−→ G and G

Ξ−→ R

are R−module homomorphisms, Kb
a means Kb

aF , and Lb
a means Lb

aF ∗. A pair of
homotopies

s : SaF ∗ ⊗
b∧

F ∗ → Sa−1F
∗ ⊗

b+1∧
F ∗ and t : DaF ⊗

b∧
F ∗ → Da+1F ⊗

b+1∧
F ∗,

which satisfy the properties of Proposition 1.6 is fixed. Let ξ represent the element
Ξ of G∗, and υ represent the element ΞΥ of F ∗.

(Notice that the abbreviations Kb
a and Lb

a have different meanings in (2.1) and
(5.1).) For each integer i, we consider a bicomplex bi(Ξ,Υ) = bi. The complex
bi(Ξ,Υ) = bi is the total complex of bi.

(5.2) The portrait of bi:

K0
g−f−i−1 ⊗

∧g G∗→. . .→ K0
0 ⊗

∧f+i+1 G∗ → ∧i+1 G∗ → L0
1 ⊗

∧i G∗ →. . .→L0
i+1 ⊗

∧0 G∗

↓ ↓ ↓ ↓ ↓
K1

g−f−i−1 ⊗
∧g G∗→. . .→ K1

0 ⊗
∧f+i+1 G∗ → ∧i+2 G∗ → L1

1 ⊗
∧i G∗ →. . .→L1

i+1 ⊗
∧0 G∗

↓ ↓ ↓ ↓ ↓
..
.

..

.
..
.

..

.
..
.

↓ ↓ ↓ ↓ ↓
Kf−2

g−f−i−1 ⊗
∧g G∗→. . .→Kf−2

0 ⊗∧f+i+1 G∗→∧f+i−1 G∗→Lf−2
1 ⊗∧i G∗→. . .→Lf−2

i+1 ⊗
∧0 G∗

↓ ↓ ↓ ↓ ↓
Kf−1

g−f−i−1 ⊗
∧g G∗→. . .→Kf−1

0 ⊗∧f+i+1 G∗→ ∧f+i G∗ →Lf−1
1 ⊗∧i G∗→. . .→Lf−1

i+1 ⊗
∧0 G∗

The module
∧f+i

G∗ is considered to be bi
0 i+1. In other words,

(5.3)

bi
a b =


Lf−1−a

i+1−b ⊗∧b
G∗, if 0 ≤ a ≤ f − 1 and 0 ≤ b ≤ i,∧f+i−a

G∗, if 0 ≤ a ≤ f − 1 and b = i + 1,

Kf−1−a
b−i−2 ⊗∧b+f−1

G∗, if 0 ≤ a ≤ f − 1 and i + 2 ≤ b ≤ g − f + 1.

We take bi
a b to be 0 if

(5.4)
a ≤ −1 or f ≤ a or b < min {0, i + 1} or max {i + 1, g − f + 1} < b.

The horizontal maps in
(
bi, d

)
are given by :

(5.5)
Kb

a ⊗∧c
G∗ – – – – – → Kb

a−1 ⊗
∧c−1

G∗

∩q ∩q

DaF ⊗∧b
F ∗ ⊗∧c

G∗ δΥ∗−−−−−−−→ Da−1F ⊗∧b
F ∗ ⊗∧c−1

G∗,
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(5.6) Kb
0 ⊗

f+c∧
G∗ =

b∧
F ∗ ⊗

f+c∧
G∗ 1⊗∆−−−→

b∧
F ∗ ⊗

f−b∧
G∗ ⊗

b+c∧
G∗

1⊗∧f−b Υ∗⊗1−−−−−−−−−→
b∧

F ∗ ⊗
f−b∧

F ∗ ⊗
b+c∧

G∗ µ⊗1−−→
b+c∧

G∗,

(5.7)
b+c∧

G∗ ∆−→
b+1∧

G∗ ⊗
c−1∧

G∗
∧b+1 Υ∗
−−−−−→

b+1∧
F ∗ ⊗

c−1∧
G∗

∂id ⊗1−−−−→ Lb
1 ⊗

c−1∧
G∗, and

(5.8)
Lb

a ⊗∧c
G∗ – – – – – → Lb

a+1 ⊗
∧c−1

G∗

∩q ∩q

SaF ∗ ⊗∧b
F ∗ ⊗∧c

G∗ ∂Υ∗−−−−−−−→ Sa+1F
∗ ⊗∧b

F ∗ ⊗∧c−1
G∗.

The induced maps of (5.5) and (5.8) exist because of the commutative diagrams
(1.16) and (1.15). The vertical maps

(5.9)

∧b
G∗

↓∧b+1
G∗

in
(
bi, d

)
are given by exterior multiplication: d(x) = ξ ∧ x for all x ∈ ∧b

G∗. The
other two types of vertical maps in bi are more complicated. These maps are where
bi differs significantly from Bi. The vertical maps in Bi are all Koszul maps, and,
except for column i, they are all linear. The columns of bi (other than column i+1)
are comprised of quadratic maps which are not Koszul maps. The bicomplex b0

is isomorphic to the bicomplex (∗∗) of [11, Theorem 5.1]; however, our description
of the vertical maps differs a great deal from the description given by Buchsbaum
and Eisenbud. Before describing the other maps in bi, we define two intermediate
maps.

Definition 5.10. If the notation of (5.1) is adopted, then define maps

` : SaF ∗ ⊗
b∧

F ∗ ⊗
c∧

G∗ → SaF ∗ ⊗
b+1∧

F ∗ ⊗
c∧

G∗ by

`(x) = (1 ⊗ υ ⊗ 1) (x) − (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ (x)

and define maps

m : DaF ⊗
b∧

F ∗ ⊗
c∧

G∗ → DaF ⊗
b+1∧

F ∗ ⊗
c∧

G∗ by

� x,m(y) �=� `(x), y �

for all x ∈ SaF ∗ ⊗∧f−b−1
F ∗ ⊗∧g−c

G∗ and y ∈ DaF ⊗∧b
F ∗ ⊗∧c

G∗, where

� , � :

(
SaF ∗ ⊗

f−b∧
F ∗ ⊗

g−c∧
G∗
)

⊗
(

DaF ⊗
b∧

F ∗ ⊗
c∧

G∗
)

→ R
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is the perfect pairing of (1.3).

Remarks 5.11. The following conventions are used in the above definition and
throughout the paper.

(a) We write υ as an abbreviation for the map υ∧ :
∧b

F ∗ → ∧b+1
F ∗ which

sends y to υ ∧ y.
(b) In the definition of `, we simplified the notation by writing s instead of s⊗1

because the meaning is not ambiguous. This convention is also mentioned
between (1.16) and (1.17).

We are now able to define the rest of the maps of (5.2). The vertical maps

Lb
a ⊗∧c

G∗

↓
Lb+1

a ⊗∧c
G∗

and
Kb

a ⊗∧c
G∗

↓
Kb+1

a ⊗∧c
G∗

of
(
bi, d

)
are given by

(5.12) Lb
a ⊗

c∧
G∗ s−→ Sa−1F

∗ ⊗
b+1∧

F ∗ ⊗
c∧

G∗ `−→ Sa−1F
∗ ⊗

b+2∧
F ∗ ⊗

c∧
G∗

∂id ⊗1−−−−→ Lb+1
a ⊗

c∧
G∗ and

(5.13) Kb
a ⊗

c∧
G∗ ⊆ DaF ⊗

b∧
F ∗ ⊗

c∧
G∗ m−→ DaF ⊗

b+1∧
F ∗ ⊗

c∧
G∗

t−→ Da+1F ⊗
b+2∧

F ∗ ⊗
c∧

G∗ δid−−→ Kb+1
a ⊗

c∧
G∗,

respectively.
The next result may be compared with (0.10) and Proposition 2.12.

Proposition 5.14. If the data of (5.1) is adopted, then bg−f−1−i ∼= (bi)∗[−g].

Proof. A routine calculation using (5.3), (5.4), and (1.9) shows that

bg−f−1−i
a b

∼= (bi
f−1−a g−f+1−b

)∗
is a module isomorphism for all integers a, b, and i. It follows that

(5.15) bg−f−1−i
j

∼= (bi
g−j

)∗
is a module isomorphism for all integers i and j. If 1 ≤ a, 0 ≤ b ≤ f −1, and 1 ≤ c,
then the arguments near (2.14) and (2.16) show that the horizontal maps

Lb
a ⊗

c∧
G∗ ∂Υ∗−−−→ Lb

a+1 ⊗
c−1∧

G∗ and Kf−b−1
a ⊗

g−c+1∧
G∗ δΥ∗−−−→ Kf−b−1

a−1 ⊗
g−c∧

G∗

and the horizontal maps

b+c∧
G∗ d−→ Lb

1 ⊗
c−1∧

G∗ and Kf−b−1
0 ⊗

g−c+1∧
G∗ d−→

g−b−c∧
G∗
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are dual to one another. It is obvious that exterior multiplication∧b
G∗

ξ∧
y∧b+1

G∗

is dual to

∧g−b−1
G∗yξ∧∧g−b

G∗.

To show duality among the other vertical maps, it suffices to show that the diagram

(5.16)

Lb
a ⊗∧c

G∗ ∼=−−−−→
(
Kf−b−1

a−1 ⊗∧g−c
G∗
)∗

∂id `s

y (δid tm)∗
y

Lb+1
a ⊗∧c

G∗ ∼=−−−−→
(
Kf−b−2

a−1 ⊗∧g−c
G∗
)∗

commutes for 1 ≤ a and 0 ≤ b ≤ f − 2. The horizontal maps in (5.16) are given, as
always, by (1.13) and (1.2). We establish that the diagram commutes by showing
that

(5.17) � ∂id `s(x), t(y) �= ± � x, t δid tm(y) �

for all x ∈ Lb
a⊗
∧c

G∗ and y ∈ Kf−b−2
a−1 ⊗∧g−c

G∗. According to (1.4) and definition
5.10, the left side of (5.17) is equal to ± � s(x),m δid t(y) �. On the other hand,
the domain of y guarantees that δid t(y) = y − t δid y = y; hence, the left side of
(5.17) is equal to

± � s(x),m(y) �= ± � x, tm(y) � .

The homotopy t satisfies parts (c) and (d) of Proposition 1.6; thus, t = t δid t, and
(5.17) has been verified. �
Proposition 5.18. If the data of (5.1) is adopted, then bi is a complex.

Proof. It suffices to prove that bi is a bicomplex. The arguments of Proposition
2.18 show that each row of bi is a complex. The product ξ ∧ ξ = 0 in

∧2
G∗; hence

the (i + 1)st column of bi is also a complex. To show that the other columns of bi

are complexes, it suffices, because of Proposition 5.14, to show that the composition

Lb
a ⊗∧c

G∗

∂id `s

y
Lb+1

a ⊗∧c
G∗

∂id `s

y
Lb+2

a ⊗∧c
G∗

is zero. In fact, we show that the map
(5.19)

`s ∂id `s : SaF ∗ ⊗
b∧

F ∗ ⊗
c∧

G∗ → Sa−1F
∗ ⊗

b+3∧
F ∗ ⊗

c∧
G∗ is the zero map
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for all a, b and c. We begin by observing that

(5.20) s`s = 0

because s`s = s (1 ⊗ υ ⊗ 1) s−s (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ s. The map s commutes with mul-
tiplication by (1 ⊗ 1 ⊗ ξ); and therefore both terms in s`s are zero by Proposition
1.6 (b). It follows from (5.20) and Proposition 1.6 (a) that `s ∂id `s = ``s =

[(1 ⊗ υ ⊗ 1) − (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ ] [(1 ⊗ υ ⊗ 1) − (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ ] s;

thus, `s ∂id `s = A + B + C for

A = − (1 ⊗ 1 ⊗ ξ) (1 ⊗ υ ⊗ 1) s ∂Υ∗ s,

B = − (1 ⊗ 1 ⊗ ξ) s (1 ⊗ υ ⊗ 1) ∂Υ∗ s, and

C = (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ s.

The Koszul algebra
(
S•F ∗ ⊗∧•

G∗, ∂Υ∗
)

is a differential algebra; hence,

∂Υ∗ (1 ⊗ 1 ⊗ ξ) = (υ ⊗ 1 ⊗ 1) − (1 ⊗ 1 ⊗ ξ) ∂Υ∗ .

Since (1 ⊗ 1 ⊗ ξ) s (1 ⊗ 1 ⊗ ξ) = 0, we see that

C = (1 ⊗ 1 ⊗ ξ) s (υ ⊗ 1 ⊗ 1) s ∂Υ∗ s, and `s ∂id `s = (1 ⊗ 1 ⊗ ξ) D ∂Υ∗ s, where

D = − (1 ⊗ υ ⊗ 1) s− s (1 ⊗ υ ⊗ 1) + s (υ ⊗ 1 ⊗ 1) s. On the other hand, if y is any
element of

∧1
F ∗, then

(5.21) (1 ⊗ y ⊗ 1)s = s(y ⊗ 1 ⊗ 1)s− s(1 ⊗ y ⊗ 1)

as maps from SaF ∗ ⊗∧b
F ∗ ⊗∧c

G∗ to Sa−1F
∗ ⊗∧b+2

F ∗ ⊗∧c
G∗ for all a, b and

c. Indeed, the map on the left side of (5.21) is equal to

(s ∂id + ∂id s)(1 ⊗ y ⊗ 1)s = s ∂id(1 ⊗ y ⊗ 1)s = s ( (y ⊗ 1 ⊗ 1) − (1 ⊗ y ⊗ 1) ∂id ) s

= s(y ⊗ 1 ⊗ 1)s − s(1 ⊗ y ⊗ 1)(id − s ∂id) = s(y ⊗ 1 ⊗ 1)s − s(1 ⊗ y ⊗ 1).

We have now established both (5.21) and (5.19).
We next show that the square

Lb
a ⊗∧c

G∗ ∂Υ∗−−−−→ Lb
a+1 ⊗

∧c−1
G∗

∂id `s

y ∂id `s

y
Lb+1

a ⊗∧c
G∗ ∂Υ∗−−−−→ Lb+1

a+1 ⊗
∧c−1

G∗

commutes for a ≥ 1. The map

Sa−1F
∗ ⊗

b+1∧
F ∗ ⊗

c∧
G∗ ∂id−−→ Lb

a ⊗
c∧

G∗
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is surjective, so it suffices to prove that

(5.22) ∂id `s ∂Υ∗ ∂id − ∂Υ∗ ∂id `s ∂id = 0.

Once ` is replaced by (1 ⊗ υ ⊗ 1) − (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ , we see that the left side of
(5.22) is equal to A + B + C + D for

A = ∂id (1 ⊗ υ ⊗ 1) s ∂Υ∗ ∂id

B = − ∂id (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ s ∂Υ∗ ∂id

C = − ∂Υ∗ ∂id (1 ⊗ υ ⊗ 1) s ∂id, and

D = ∂Υ∗ ∂id (1 ⊗ 1 ⊗ ξ) s ∂Υ∗ s ∂id .

Use the fact that ∂id and ∂Υ∗ are differential algebra maps in order to write

A = (υ ⊗ 1 ⊗ 1)s ∂Υ∗ ∂id − (1 ⊗ υ ⊗ 1) ∂id ∂Υ∗

C = −(υ ⊗ 1 ⊗ 1) ∂Υ∗ s ∂id +(1 ⊗ υ ⊗ 1) ∂Υ∗ ∂id

D = (υ ⊗ 1 ⊗ 1) ∂id s ∂Υ∗ s ∂id − (1 ⊗ 1 ⊗ ξ) ∂id(∂Υ∗ s ∂Υ∗)s ∂id

B = − (1 ⊗ 1 ⊗ ξ) ∂id s(∂Υ∗ s ∂Υ∗) ∂id

Equation (5.22) is established as soon as we show

(5.23) s ∂Υ∗ ∂id = (∂Υ∗ s ∂id) − ∂id s(∂Υ∗ s ∂id), and

(5.24) ∂id(∂Υ∗ s ∂Υ∗)s ∂id + ∂id s(∂Υ∗ s ∂Υ∗) ∂id = 0.

The right side of (5.23) is

(1 − ∂id s)(∂Υ∗ s ∂id) = s ∂id(∂Υ∗ s ∂id) = s ∂Υ∗ ∂id,

where the last equality holds because ∂id and ∂Υ∗ commute and

(5.25) ∂id s ∂id = ∂id .

Equality (5.24) follows from (5.25) because

∂id(∂Υ∗ s ∂Υ∗) = ∂Υ∗ ∂id s ∂Υ∗ = ∂Υ∗(1−s ∂id) ∂Υ∗ = − ∂Υ∗ s ∂id ∂Υ∗ = −(∂Υ∗ s ∂Υ∗) ∂id .

We show that the square∧b+c
G∗ d−−−−→ Lb

1 ⊗
∧c−1

G∗

ξ∧
y ∂id `s

y∧b+c+1
G∗ d−−−−→ Lb+1

1 ⊗∧c−1
G∗

commutes, for b ≥ 0, by showing that

(5.26)

∧b+c
G∗ ∆−−−−→ ∧b+1

G∗ ⊗∧c−1
G∗

∧b+1 Υ∗
−−−−−→ ∧b+1

F ∗ ⊗∧c−1
G∗

ξ∧
y `

y∧b+c+1
G∗ ∆−−−−→ ∧b+2

G∗ ⊗∧c−1
G∗

∧b+2 Υ∗
−−−−−→ ∧b+2

F ∗ ⊗∧c−1
G∗
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commutes. The counterclockwise composition is

(1 ⊗ υ ⊗ 1)

(
b+1∧

Υ∗
)

∆ + (−1)b+2 (1 ⊗ 1 ⊗ ξ)

(
b+2∧

Υ∗
)

∆.

The clockwise composition is

(1 ⊗ υ ⊗ 1)

(
b+1∧

Υ∗
)

∆ − (1 ⊗ 1 ⊗ ξ) s ∂Υ∗

(
b+1∧

Υ∗
)

∆.

The diagram (5.26) commutes since the co-associative property in
∧•

G∗ ensures
that

∂Υ∗

(
b+1∧

Υ∗
)

∆ = (−1)b+1 ∂id

(
b+2∧

Υ∗
)

∆. �

Section 6. Elementary facts about the complexes bi
.

In this section we record facts about the complexes bi which are analogous to
the results of section 3. The complexes bi are interesting only when f − 1 ≤ g (see
Observation 8.10); so no information is lost when we impose this hypothesis.

Observation 6.1. Adopt the notation of (5.1). If f − 1 ≤ g, then bi
j 6= 0 if and

only if there is a dot at the point (i, j) in the picture below.

i

• · · · · · · · · · • +∞
..
.

..

.
..
.

..

.
..
.

• · · · · · · · · · • g − 1

. . .
.
..

.

..
.
..

• · · · • g − f

.

..
.
..

.

..

• · · · • −1

..

.
..
.

..

.
. . .

• · · · · · · · · · • −f

.

..
.
..

.

..
.
..

.

..

• · · · · · · · · · • −∞
j f + g − 1 g 0 1− f

x←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

We describe the twists in bi in a manner analogous to Figure 3.4. Each differ-
ential map in bi may be viewed as a matrix of homogeneous forms. The degrees of
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The degrees of the maps in bi:

K0 g
m

1−−−−−→ .
1−−−−−→ K0 f+i+1

0

f−−−−−→ ∧i+1 1−−−−−→ L0 i
1

1−−−−−→ .
1−−−−−→ L0 0

i+1

2

y 2

y 1

y 2

y 2

y
K1 g

m
1−−−−−→ .

1−−−−−→ K1 f+i+1
0

f−1−−−−−→ ∧i+2 2−−−−−→ L1 i
1

1−−−−−→ .
1−−−−−→ L1 0

i+1

2

y 2

y 1

y 2

y 2

y
..
.

..

.
..
.

..

.
..
.

2

y 2

y 1

y 2

y 2

y
Kf−2 g

m
1−−−−−→ .

1−−−−−→ Kf−2 f+i+1
0

2−−−−−→ ∧f+i−1 f−1−−−−−→ Lf−2 i
1

1−−−−−→ .
1−−−−−→ Lf−2 0

i+1

2

y 2

y 1

y 2

y 2

y
Kf−1 g

m
1−−−−−→ .

1−−−−−→ Kf−1 f+i+1
0

1−−−−−→ ∧f+i f−−−−−→ Lf−1 i
1

1−−−−−→ .
1−−−−−→ Lf−1 0

i+1

Figure 6.2

these forms are recorded in Figure 6.2 where m = g−f − i−1, Kb c
a = Kb

a⊗
∧c

G∗,∧c =
∧c

G∗, and Lb c
a = Lb

a ⊗∧c
G∗.

Notation 6.3. Retain the data of (5.1). Let J(Ξ,Υ) be the ideal I1(ΞΥ) + If (Υ)
of R, A(Ξ,Υ) be the ring R/J(Ξ,Υ), and N(Ξ,Υ) be the R−module

coker(Υ∗)
I1(ΞΥ) coker(Υ∗)

.

When there is no ambiguity, we write A, J, and N in place of A(Ξ,Υ), J(Ξ,Υ), and
N(Ξ,Υ). If f ≤ g, then J is one of the ideals “J” from (0.1); otherwise, J is simply
equal to I1(ΞΥ). It is easy to see that N is actually an A−module; furthermore,
if X and Y are matrices for Ξ and Υ (as described in Observation 3.6 (b)), then
there is a surjection from N onto the A−ideal

(6.4)
If−1(rows 1 to f − 1 of Y ) + J

J
.

If the data of (5.1) is sufficiently general (see Theorems 9.2 (a) and 9.3 (a), and
(10.8)), then the surjection of (6.4) is an isomorphism.

Observation 6.5. Adopt the notation of (6.3) with f − 1 ≤ g. The following
statements hold.

(a)

H0(bi) ∼=
{

A if i = 0, and
Si(N) if i ≥ 1.

(b) Let Φ be any element of F ∗, Υ∗
Φ : G∗⊕R → F ∗ be the extension of Υ∗ which

sends
[

0

1

]
to Φ, and JΦ be the ideal

I1(ΞΥ) + If (Υ∗
Φ)

J

of A. Then there is an R−module surjection H0(b−1) � JΦ.
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Note. Recall the notation of Observation 3.6 (b). Let Φ1, . . . ,Φf be the basis of
F ∗ which is dual to the basis ϕ1, . . . , ϕf of F . If Φ is the element Φf of F ∗, then
JΦ is the ideal

(6.6)
If−1(columns 1 to f − 1 of Y ) + J

J
.

If the data of (5.1) is sufficiently general (see Theorems 9.2 (a) and 9.3 (a), and
(10.7)), then the surjection of (b) is an isomorphism.

Proof. (a) The assertion holds for i = 0 because the R−modules A and H0(b0)
are both presented by

[∧f Υ∗ υ
]

:
f∧

G∗ ⊕
f−1∧

F ∗ →
f∧

F ∗.

We next assume that i ≥ 1. The modules Si(N) and Si(coker(Υ∗)) ⊗ (R/I1(ΞΥ))
are isomorphic, and both modules are presented by

[ ∂Υ∗ 1 ⊗ υ ] :

(
Si−1F

∗ ⊗
f∧

F ∗ ⊗ G∗
)

⊕
(

SiF
∗ ⊗

f−1∧
F ∗
)

→ SiF
∗ ⊗

f∧
F ∗.

We observed in (1.12) that SiF
∗ ⊗∧f−1

F ∗ = sLf−2
i+1 ⊕Lf−1

i . Use (5.2) in order to
see that H0(bi) is presented by

[ ∂Υ∗ (1 ⊗ υ)s ] :

(
Si−1F

∗ ⊗
f∧

F ∗ ⊗ G∗
)

⊕ Lf−2
i+1 → SiF

∗ ⊗
f∧

F ∗.

On the other hand, Lf−1
i = ∂id

(
Si−1F

∗ ⊗∧f
F ∗
)
; and the fact that

(
S•F ∗ ⊗∧•

F ∗, ∂id

)
is a DG−algebra ensures that (1 ⊗ υ) ∂id

(
Si−1F

∗ ⊗∧f
F ∗
)
⊆ im(∂Υ∗).

(b) The module H0(b−1) is presented by

[ (µ ⊗ 1)◦Υ∗◦(1 ⊗ ∆) ξ ] :

(
f−1∧

F ∗ ⊗
f∧

G∗
)

⊕
f−2∧

G∗ −→
f−1∧

G∗,

and the map
∧f−1

G∗ → JΦ which is given by x 7→
[
Φ ∧

(∧f−1 Υ∗
)

(x)
]

induces
the desired surjection. �

Example 6.7. If f = 1, then bi is the top row of bi for all integers i. Furthermore,
in this case, bi is the usual Koszul complex associated to the map Υ∗ : G∗ → R.

Example 6.8. Adopt the notation of (6.3) with f − 1 ≤ g. If R is local and
If−1(Y ) = R, then H0(bi) = A for all i ≥ 0. Indeed, one may choose the bases for
F and G so that the matrix of Υ is

If−1 0
yff

0
...

ygf

 .
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It readily follows that J = (x1, . . . , xf−1, yff , . . . , ygf ) and N = R/J.

Example 6.9. In the notation of Example 3.12, let N = N(X ,Y). If pdR Si(N) <
∞, then pdR[T ] Si(N ) = pdR Si(N) + 1.

We conclude this section with a result about the complexes bi which is analogous
to Proposition 3.13 and (0.12). In the next result we write Ã, b̃, b̃, J̃, and Ñ to mean
A(Ξ̃, Υ̃), b(Ξ̃, Υ̃), b(Ξ̃, Υ̃), J(Ξ̃, Υ̃), and N(Ξ̃, Υ̃), respectively. We also write A, b̄,
b̄, J, and N to mean A(Ξ,Υ), b(Ξ,Υ), b(Ξ,Υ), J(Ξ,Υ), and N(Ξ,Υ) respectively.

Theorem 6.10. In the notation of (5.1), let G = G̃⊕Rγ for some free R−module
G̃ of rank g−1, Ξ̃ : G̃ → R be the restriction of Ξ to G̃, Υ̃ : F → G̃ be the composition

F
Υ−→ G = G̃ ⊕ Rγ

proj−−→ G̃,

and Ξ: G → R be the composition

G = G̃ ⊕ Rγ
proj−−→ G̃

Ξ̃−→ R.

Then, for every integer i, there is a short exact sequence of complexes

(6.11) 0 → b̃i → b̄i → b̃i−1[−1] → 0;

in particular, there is a long exact sequence of homology

(6.12) · · · → Hj+1(b̄i) → Hj(b̃i−1) → Hj(b̃i) → Hj(b̄i) → Hj−1(b̃i−1) → . . . .

If Γ is the element of G∗ with Γ(γ) = 1 and Γ|G̃ = 0, then the sequences

(6.13) H1(b̃i) → H1(b̄i) → Si−1(Ñ)
Υ∗(Γ)−−−−→ Si(Ñ) → Si(N) → 0, for i ≥ 1, and

(6.14) H1(b̃0) → H1(b̄0) → H0(b̃−1) → J/J̃ → 0

are exact where S0(Ñ) is taken to mean Ã.

Proof. If we identify G̃∗ with the submodule of G∗ which annihilates γ, then the
decomposition

(6.15) G∗ = G̃∗ ⊕ RΓ

is dual to the decomposition G = G̃ ⊕ Rγ; moreover (6.15) induces a short exact
sequence

(6.16) 0 →
c∧

G̃∗ →
c∧

G∗ →
c−1∧

G̃∗ → 0.
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Recall the definition of bi
a b given in (5.3). For each triple of integers (a, b, i), (6.16)

gives rise to a short exact sequence of modules

0 → b̃i
a b → b̄i

a b → b̃i−1
a b−1 → 0.

It is tedious, but not difficult, to verify that these exact sequences induce the short
exact sequence (6.11). (It is crucial, when performing these verifications, to observe
that

Υ∗|G̃∗ = Υ̃∗, ΞΥ = Ξ̃Υ̃, and Ξ|G̃ = Ξ̃.

The middle equation is significant. It is not true, in general, that ΞΥ = Ξ̃Υ̃;
furthermore there is no short exact sequence analogous to (6.11) with b̄ replaced
by b.) Now that (6.11) is exact, it follows that (6.12) is also exact. If 0 ≤ i, then
the module H0(bi) has been identified in Observation 6.5. The exactness of (6.14)
follows immediately. The exactness of (6.13) is established as soon as one checks
that the connecting homomorphism

Si−1(Ñ) ∼= H0(b̃i−1) → H0(b̃i) ∼= Si(Ñ)

is multiplication by the element Υ∗(Γ) of the symmetric algebra SÃ
• (Ñ). �

Section 7. The acyclicity of bi
for f ≤ g in the generic case.

Notation 7.1. Let f and g be positive integers, R0 be a commutative noetherian
ring, X1×g = (xi) and Yg×f = (yij) be matrices of indeterminates, and R be the
polynomial ring R0[X,Y ]. Let Υ: F → G and Ξ: G → R be the maps of free
R−modules which are given by X and Y . Adopt the conventions of (5.1). Let b
mean b(Ξ,Υ), b mean b(Ξ,Υ), and C represent cokerΥ∗. The symbol ⊗ means
⊗R.

We consider the complexes bi with g < f in section 8. The main result of the
present section is Theorem 7.36, where we prove that bi is acyclic provided −1 ≤ i
and f ≤ g. Our proof is similar to the proof of Theorem 4.2; however there are three
significant differences. First of all, there is no result in the literature which plays
the role of Observation 3.10; instead, we must offer our own proof (Theorem 7.24)
of the “base case” f = g. Most of this section is devoted to proving Theorem 7.24.
The second difference between the proof of Theorem 7.36 and the proof of Theorem
4.2 involves the inductive step. In (3.14) we obtain the complex Bi, constructed
with generic data, as the mapping cone of two complexes constructed with less
data. However, the mapping cone argument of (6.11) does not yield the complex
bi constructed using generic data; instead one variable must be set equal to zero.
The third difference pertains to the very statements of the theorems. Theorem 4.2
is valid for all positive integers f and g; but, Theorem 7.36 requires that f and
g satisfy an inequality. Indeed, Observation 8.10 shows that bi is not acyclic for
g ≤ f − 2.

The lemmas that we use in the beginning of our proof of Theorem 7.24 (the case
f = g) also hold whenever g < f ; and therefore, we re-use them in our proof of
Theorem 8.3 (the case g = f − 1). The outline of our proof of Theorem 7.24 is
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straightforward, but steps are intricate. We begin by showing (Lemma 7.7) that
row a of bi (denoted bi

a∗) is acyclic for all a. We conclude the argument by showing
that the induced complex of homology

(7.2) H′(bi) : 0 → H0(bi
f−1 ∗) → H0(bi

f−2 ∗) → · · · → H0(bi
0∗)

is also acyclic. The key step (Theorem 7.22) in our proof that (7.2) is acyclic is a
linkage argument which involves a Huneke-Ulrich deviation two Gorenstein ideal.

In the course of proving Lemma 7.7, we prove that the homology H0(bi
a∗) is

isomorphic to a module of cycles from a complex we have called Gb. For each
b ≥ 0, let Gb be the following complex of R−modules:

(7.3) Gb : 0 →
b∧

G∗
∧b Υ∗
−−−−→ S0(C) ⊗

b∧
F ∗ ∂id−−→ S1(C) ⊗

b−1∧
F ∗ ∂id−−→ · · ·

∂id−−→ Sb−1(C) ⊗
1∧

F ∗ ∂id−−→ Sb(C) ⊗
0∧

F ∗ → 0,

where ∂id : Sa(C) ⊗∧c
F ∗ → Sa+1(C) ⊗∧c−1

F ∗ is induced by the Koszul differ-
ential

∂id : SaF ∗ ⊗
c∧

F ∗ → Sa+1F
∗ ⊗

c−1∧
F ∗.

Lemma 7.4. Adopt the notation of (7.1). If g ≤ f , then the complex Gb is split
exact for all b ≥ 0.

Proof. Let A and B represent the complexes

A : 0→ ∧f G∗ 0−→ ∧f−1 G∗ 0−→ . . .
0−→ ∧1 G∗ 0−→ ∧0 G∗, and

B : 0→SR• (C)⊗∧f F ∗ ∂id−−→SR• (C)⊗∧f−1 F ∗ ∂id−−→. . .
∂id−−→SR• (C)⊗∧1 F ∗ ∂id−−→SR• (C)⊗∧0 F ∗.

Observe that
∧• Υ∗ : A → B is a map of complexes, and let M be the mapping cone

of
∧• Υ∗. Since Gb is a graded strand of M, we complete the proof by showing that

M is split exact; and we do this by proving that
∧• Υ∗ induces an isomorphism on

homology.
Let S be the ring SR

• (F ∗) and let D be the double complex(
S ⊗

•∧
G∗, ∂Υ∗

)
⊗S

(
S ⊗

•∧
F ∗, ∂id

)
.

(We consider Dab to be the module S⊗∧a
G∗⊗∧b

F ∗.) Each row of D is acyclic be-
cause

(
S ⊗∧•

F ∗, ∂id

)
is the minimal S−resolution of R. The image of Υ∗ : G∗ →

F ∗ in S has grade g by [16, Proposition 21]; therefore,

(7.5)

(
S ⊗

•∧
G∗, ∂Υ∗

)
is an S−resolution of S•(C),
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and each column of D is acyclic. The homology of the total complex of D may be
computed using either row homology or column homology; that is, if D is augmented
so that each row and column of

...
...

...
...

...
↓ ↓ ↓ ↓ ↓

· · · →D23→D22→D21→D20→H ′
2→0

↓ ↓ ↓ ↓ ↓
· · · →D13→D12→D11→D10→H ′

1→0
↓ ↓ ↓ ↓ ↓

· · · →D03→D02→D01→D00→H ′
0→0

↓ ↓ ↓ ↓
· · · →H ′′

3 →H ′′
2 →H ′′

1 →H ′′
0

↓ ↓ ↓ ↓
0 0 0 0

,

which contains some Dij , is exact, then

(7.6) H•(H′) ∼= H•(Tot(D)) ∼= H•(H′′),

where H′′ is the row of column homology

· · · → H′′
3 → H′′

2 → H′′
1 → H′′

0 ,

and H′ is the column of row homology

· · · → H′
3 → H′

2 → H′
1 → H′

0 .

In our situation, H′ = A and H′′ = B. A straightforward calculation shows that
the isomorphism Hi(A) → Hi(B) of (7.6), is induced by ±∧i Υ∗. For example, we
illustrate the path in D from H2(H′) =

∧2
G∗ to H2(H′′) = H2(B). If y1 and y2

are in G∗, then:

1⊗ (y1 ∧ y2)⊗ 1→ y1 ∧ y2

↓
1⊗ y2 ⊗Υ∗(y1) → Υ∗(y1)⊗ y2 ⊗ 1
−1⊗ y1 ⊗Υ∗(y2) −Υ∗(y2)⊗ y1 ⊗ 1

↓
−1⊗ 1⊗∧2 Υ∗(y1 ∧ y2) → Υ∗(y2)⊗ 1⊗Υ∗(y1)−Υ∗(y1)⊗ 1⊗Υ∗(y2)

↓
−1⊗∧2 Υ∗(y1 ∧ y2). �

Lemma 7.7. Adopt the notation of (7.1). If g ≤ f and i ≥ 0, then each row of
the bicomplex bi is acyclic.

Proof. Recall that if 0 ≤ a ≤ f − 1, then the ath row of bi is the complex

(bi
a∗, d) : 0→

f+i−a∧
G∗ → Lf−a−1

1 ⊗
i∧

G∗ → Lf−a−1
2 ⊗

i−1∧
G∗ → · · · → Lf−a−1

i+1 ⊗
0∧

G∗,
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where the differential d is described in (5.7) and (5.8). The complex Gf+i−a is
defined in (7.3). Let Zj(F) represent the module of cycles in the complex F at
position j. For each pair of integers (a, i) with 0 ≤ i and 0 ≤ a ≤ f − 1, consider
the R−module homomorphism

(7.8) βi
a : Lf−a−1

i+1 ⊗
0∧

G∗ → Gf+i−a
f−a−1

which is the composition

Lf−a−1
i+1 ⊗

0∧
G∗ incl−−→ Si+1F

∗⊗
f−a−1∧

F ∗⊗
0∧

G∗ nat−−→ Si+1(C)⊗
f−a−1∧

F ∗ = Gf+i−a
f−a−1.

It is obvious that the image of βi
a is contained in Zf−a−1(Gf+i−a), and it is not

difficult to see that the map of (7.8) induces a map

H0(bi
a∗) → Zf−a−1(Gf+i−a).

(The cases i ≥ 1 and i = 0 must be treated separately, but neither case poses any
difficulty.) We prove, by induction on i, that each augmented complex

(7.9) b̌i
a∗ : 0 → bi

a i+1 → · · · · · · → bi
a1 → bi

a0

βi
a−→ Zf−a−1(Gf+i−a) → 0

is exact.
It is clear that the augmented complex b̌0

a∗ is exact. Indeed, the complex Gf−a

is exact by Lemma 7.4; and therefore, the top row of the commutative diagram

0 −−−−→ ∧f−a
G∗

∧f−a Υ∗
−−−−−−→ S0(C) ⊗∧f−a

F ∗ ∂id−−−−→ Zf−a−1(Gf−a) −−−−→ 0∥∥∥ ∼=
y∂id

∥∥∥
0 −−−−→ ∧f−a

G∗ −−−−→ Lf−a−1
1 ⊗∧0

G∗ β0
a−−−−→ Zf−a−1(Gf−a)

is exact. The bottom row is b̌0
a∗.

It is also clear that b̌i
0 ∗ is exact for every i ≥ 1. Indeed, b̌i

0 ∗ is isomorphic to

(7.10) 0 → S0F
∗ ⊗

f∧
F ∗ ⊗

i∧
G∗ → S1F

∗ ⊗
f∧

F ∗ ⊗
i−1∧

G∗ → · · ·

→ SiF
∗ ⊗

f∧
F ∗ ⊗

0∧
G∗ → Si(C) ⊗

f∧
F ∗ → 0,

and we observed in (7.5) that this complex of R−modules is exact.
Fix a and i with 1 ≤ a ≤ f − 1 and 1 ≤ i. Assume, by induction, that b̌i−1

a−1 ∗
is acyclic; we prove that b̌i

a∗ is also acyclic. We begin by producing an acyclic
complex F with the property that there is a short exact sequence of augmented
complexes

(7.11) 0 → b̌i−1
a−1 ∗ → F̌ → b̌i

a∗ → 0.
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The modules in F are defined by

Fj =



Si−jF
∗ ⊗∧f−a

F ∗ ⊗∧j
G∗, if 0 ≤ j ≤ i − 1,(∧f+i−a

G∗
)
⊕
(
S0F

∗ ⊗∧f−a
F ∗ ⊗∧i

G∗
)

, if j = i,∧f+i−a
G∗, if j = i + 1, and

0, if i + 2 ≤ j.

The differential Fj → Fj−1 in F is given by
∂Υ∗ , if 0 ≤ j ≤ i − 1,

[ 0 ∂Υ∗ ] , if j = i, and[
id

0

]
, if j = i + 1.

It is clear that F is an acyclic complex. Indeed, when the module
∧f+i−a

G∗ is
split from F, the resulting complex is isomorphic to the resolution bi

0 ∗⊗
∧f−a

F ∗ of
Si(C) ⊗∧f−a

F ∗ = Gf+i−a
f−a . (See (7.10).) It follows that the augmented complex

F̌ : · · · → F1 → F0 → Gf+i−a
f−a → 0

is exact.
We next describe the maps

(7.12) 0 → b̌i−1
a−1 j → F̌j → b̌i

aj → 0.

If j = −1, then (7.12) is the sequence

0 → Zf−a(Gf+i−a) incl−−→ Gf+i−a
f−a

∂id−−→ Zf−a−1(Gf+i−a) → 0,

and we know from Lemma 7.4 that this sequence is exact. If 0 ≤ j ≤ i − 1, then
(7.12) is the short exact sequence

0 → Lf−a
i−j ⊗

j∧
G∗ incl−−→ Si−jF

∗ ⊗
f−a∧

F ∗ ⊗
j∧

G∗ ∂id−−→ Lf−a−1
i−j+1 ⊗

j∧
G∗ → 0

of (1.14). If j = i, then (7.12) is the short exact sequence

0 →
f+i−a∧

G∗ →
(

f+i−a∧
G∗
)
⊕
(

S0F
∗ ⊗

f−a∧
F ∗ ⊗

i∧
G∗
)

→ Lf−a−1
1 ⊗

i∧
G∗ → 0

where the two maps are given by[
id

(
∧f−a Υ∗)◦∆

]
and

[
− ∂id ◦(

∧f−a Υ∗)◦∆ ∂id

]
.
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If j = i + 1, then (7.12) is the short exact sequence

0 → 0 →
f−i+a∧

G∗ −id−−→
f−i+a∧

G∗ → 0.

Now that the maps in (7.11) have been defined, it is easy to verify that (7.11) is,
indeed, a short exact sequence of complexes. Two of the complexes of (7.11) are
exact; therefore, the long exact sequence of homology guarantees that b̌i

a is also
exact. �

Recall the complex H′(bi) from 7.2. Let K be the complex

(7.13) 0 →
0∧

F ∗ υ−→
1∧

F ∗ υ−→ · · · υ−→
f∧

F ∗

(with
∧f

F ∗ in position zero).

Lemma 7.14. Adopt the notation of 7.1. If g ≤ f and 0 ≤ i, then there is a short
exact sequence of complexes

(7.15) 0 → H′(bi)[−1] → Si+1(C) ⊗ K → H′(bi+1) → 0.

0 0 0
↓ ↓ ↓

d−→ L0
i+1 ⊗

∧0 G∗ βi
f−1−−−−→ Si+1(C)⊗∧0 F ∗ −−→ 0

d

y −1⊗υ

y 1⊗υ

y
d−→ L1

i+1 ⊗
∧0 G∗ βi

f−2−−−−→ Si+1(C)⊗∧1 F ∗ ∂id−−→ Si+2(C)⊗∧0 F ∗ ∂id−−→
d

y −1⊗υ

y 1⊗υ

y
d−→ L2

i+1 ⊗
∧0 G∗ βi

f−3−−−−→ Si+1(C)⊗∧2 F ∗ ∂id−−→ Si+2(C)⊗∧1 F ∗ ∂id−−→
d

y −1⊗υ

y 1⊗υ

y
.
.
.

.

.

.
.
.
.

d

y −1⊗υ

y 1⊗υ

y
d−→ Lf−2

i+1 ⊗
∧0 G∗ βi

1−−→ Si+1(C)⊗∧f−2 F ∗ ∂id−−→ Si+2(C)⊗∧f−3 F ∗ ∂id−−→
d

y −1⊗υ

y 1⊗υ

y
d−→ Lf−1

i+1 ⊗
∧0 G∗ βi

0−−→ Si+1(C)⊗∧f−1 F ∗ ∂id−−→ Si+2(C)⊗∧f−2 F ∗ ∂id−−→y −1⊗υ

y 1⊗υ

y
0 −−−→ Si+1(C)⊗∧f F ∗ ∂id−−→ Si+2(C)⊗∧f−1 F ∗ ∂id−−→ .

Diagram 7.16
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Proof. Consider Diagram 7.16. The part to the left of the maps βi
a is the bicomplex

bi; the map βi
a is defined in (7.8), and the row to the right of βi

a is a truncation of
the complex Gf+i−a from (7.3). Use Lemmas 7.7 and 7.4, together with the exact
sequence (7.9), to see that each row of (7.16) is exact. The squares from (7.16) that
look like

Si+1(C) ⊗∧p
F ∗ ∂id−−−−→ Si+2(C) ⊗∧p−1

F ∗

−1⊗υ

y 1⊗υ

y
Si+1(C) ⊗∧p+1

F ∗ ∂id−−−−→ Si+2(C) ⊗∧p
F ∗

commute because the differential property of the Koszul map ensures that

(7.17) − ∂id(1 ⊗ υ) = −(υ ⊗ 1) + (1 ⊗ υ) ∂id;

furthermore, υ = Υ∗(ξ) is the zero element in C = cokerΥ∗. The squares from
(7.16) that look like

(7.18)

Lp
i+1 ⊗

∧0
G∗ β−−−−→ Si+1(C) ⊗∧p

F ∗

d

y −1⊗υ

y
Lp+1

i+1 ⊗∧0
G∗ β−−−−→ Si+1(C) ⊗∧p+1

F ∗

also commute. Indeed, (7.18) may be expanded to become

Lp
i+1 ⊗

∧0
G∗ incl−−−−→ Si+1F

∗ ⊗∧p
F ∗ nat−−−−→ Si+1(C) ⊗∧p

F ∗

d

y (υ⊗1)s−(1⊗υ)

y −1⊗υ

y
Lp+1

i+1 ⊗∧0
G∗ incl−−−−→ Si+1F

∗ ⊗∧p+1
F ∗ nat−−−−→ Si+1(C) ⊗∧p+1

F ∗.

The square on the right commutes because υ = 0 in C. We know, from (5.12),
Definition 5.10, and (7.17) that

d = ∂id `s = ∂id ((1 ⊗ υ ⊗ 1) − (1 ⊗ 1 ⊗ ξ) s ∂Υ∗) s = ∂id(1⊗υ)s = (υ⊗1)s−(1⊗υ) ∂id s;

furthermore, the restriction of ∂id s to Lp
i+1 is the identity map by Proposition 1.6.

We conclude that (7.16) is a commutative diagram with exact rows.
In the course of studying (7.16), we have seen that

(7.19) Si+1(C) ⊗ K
∂id−−→ Si+2(C) ⊗ K[+1]

is a map of complexes (up to sign). Let Li be the kernel of (7.19). Further consid-
eration of (7.16) shows that

(7.20) 0 → Li → Si+1(C) ⊗ K → Li+1[+1] → 0

is a short exact sequence of complexes for all i ≥ 0 and that there is an isomorphism
of complexes

(7.21) H′(bi)[−1] ∼= Li

for all i ≥ 0. Combine (7.20) and (7.21) in order to establish (7.15). �
The next result, although crucial to our proof of Theorem 7.24, does not involve

any of the complexes discussed in this paper. It is about Huneke-Ulrich deviation
two Gorenstein ideals. These ideals were introduced in [18, Proposition 5.9]; they
were resolved in [24], and also in [22] and [31].
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Theorem 7.22. Let R0 be a commutative noetherian ring; X1×f , Yf×f , and T1×f

be matrices of indeterminates; and S be the polynomial ring R0[X, Y, T ]. Let z =
[z1, . . . , zf ] be the product XY , `̀̀ = [`1, . . . , `f ] be the product TY t, a be the sequence
`1, . . . , `f , z1, . . . , zf−1, and K be the S−ideal (a, zf ,det(Y )). Then,

(a) a is a regular sequence on S,
(b) ((a) : zf ) = (a, Tf )S, and
(c) ((a) : Tf ) = K.

Proof. (a) Let Y be the matrix

T1 0 · · · · · · 0

X2 T2
. . . . . .

...

0
. . . . . . . . .

...
...

. . . . . . Tf−1 0
0 · · · 0 Xf Tf

 ,

and let α : S → R0[X, T ] be the R0[X, T ]−algebra map which carries Y to Y . It
suffices to show that α(a) is a regular sequence. It is clear that

α(`̀̀) = (T 2
1 , T 2

2 + T1X2, . . . , T
2
f + Tf−1Xf )

and α(z) = (X2
2 + X1T1,X

2
3 + X2T2, . . . ,X

2
f + Xf−1Tf−1, TfXf ). It follows that

the radical of α(a) is the ideal (T1, . . . , Tf ,X2, . . . ,Xf ).
(c) Let A be the alternating matrix[

0 Y
−Y t 0

]
.

Observe that K = I1 ([ X T ]A)+(Pf A). We saw in (a) that gradeK ≥ 2f −1. It
follows that K is a Huneke-Ulrich deviation two Gorenstein ideal of grade 2f − 1.
In particular, the theory of linkage tells us that ((a) : K) is the almost complete
intersection (a, s) for some s in S and that

(7.23) ((a) : s) = K.

The theory of linkage actually yield a great deal more information about the element
s. Indeed, s appears in the following comparison of minimal resolutions:

0 −−−−→ S(−(4f − 2)) −−−−→ · · · −−−−→ S −−−−→ S/(a) −−−−→ 0

s

y ∥∥∥ y
0 −−−−→ S(−(4f − 3)) −−−−→ · · · −−−−→ S −−−−→ S/K −−−−→ 0,

where the shift 4f−3 may be found in [24, Theorem 6.1]. It follows that s is a linear
form in S = R0[T, X, Y ]. (The elements of R0 have degree zero and the entries
of T , X, and Y all have degree one.) Since each element of a is a homogeneous
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form of degree two and Tf is obviously in ((a) : K), we conclude that Tf = s; and
therefore, (7.23) guarantees that ((a) : Tf ) = K.
(b) We know that

((a) : zf ) ∩ ((a) : det(Y )) = ((a) : K) = (a, Tf ) ⊆ ((a) : zf ).

It suffices to show that ((a) : zf ) ⊆ ((a) : det(Y )). Suppose that s ∈ ((a) : zf ).
Write s = s0 + s1 where s0 ∈ R0[X, Y ] and s1 ∈ (T )S. If we set T1 = · · · = Tf = 0,
then the hypothesis szf ∈ (a) implies s0zf ∈ (z1, . . . , zf−1). We conclude that
s ∈ (T1, . . . , Tf , z1, . . . , zf−1). It is easy to see that this last ideal is contained in
((a) : det(Y )). �
Theorem 7.24. Adopt the notation of (7.1). If f = g and −1 ≤ i, then bi is
acyclic.

Proof. It suffices to prove that bi is acyclic for i ≥ 0. (Indeed, Proposition 5.14
shows that b−1 is the dual of b0. On the other hand, H0(b0) is the perfect R−module
A of Observation 6.5, and the length of b0 is equal to pdR H0(b0).) We know from
Lemma 7.7 that each row of bi is acyclic; thus, it suffices to prove that the complex
H′(bi) of (7.2) is acyclic for each i ≥ 0. We know, from the theory of linkage, that
b0 and H′(b0) are both acyclic. Fix i ≥ 0. Assume, by induction, that H′(bi) is
acyclic. We prove H′(bi+1) is also acyclic. The long exact sequence of homology
associated to (7.15) is

(7.25) · · · → H1(H′(bi)) → H2(Si+1(C) ⊗ K) → H2(H′(bi+1)) → H0(H′(bi))

→ H1(Si+1(C)⊗K) → H1(H′(bi+1)) → 0 → H0(Si+1(C)⊗K) → H0(H′(bi+1)) → 0.

We complete the proof by showing that Hj(Si+1(C)⊗K) = 0 whenever j ≥ 2, and
that the map

H0(H′(bi)) → H1(Si+1(C) ⊗ K),

from (7.25), is an isomorphism. It is easiest to treat all relevant integers i at once;
thus, we prove that

(7.26) Hj(S+(C) ⊗ K) = 0 for j ≥ 2,

and that the composition

S•F ∗ ⊗
f∧

F ∗ ∂id−−→ S+F ∗ ⊗
f−1∧

F ∗ nat−−→ S+(C) ⊗
f−1∧

F ∗

induces an isomorphism

(7.27)
S•F ∗ ⊗∧f

F ∗

I
∼= H1(S+(C) ⊗ K),

where I is the image of the map(
S•F ∗ ⊗

f−1∧
F ∗
)
⊕
(

S•F ∗ ⊗
f∧

F ∗ ⊗ G∗
)
⊕
(

S0F
∗ ⊗

f∧
G∗
)

D−→ S•F ∗⊗
f∧

F ∗,
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with
D =

[
1 ⊗ υ ∂Υ∗ incl ⊗∧f Υ∗ ] .

(Our presentation of the module H0(H′(bi)) = H0(bi) may be found in the proof
of Observation 6.5 (a).)

The assertions of (7.26) and (7.27) are established by appealing to Theorem
7.22. Recall that R is the polynomial ring R0[X, Y ] and that bases for the free
R−modules were chosen (but not named) in in (7.1). Let Φ1, . . . ,Φf be the basis
for F ∗. The R−module C is presented by

Rf Y t

−→ Rf → C → 0.

Let S be the ring S•F ∗. In other words, S is the polynomial ring R[T ], where T
is a 1× f matrix of indeterminates. It follows that S•(C) is S/I1(`̀̀) where `̀̀ is the
product TY t. The complex K is the Koszul complex on the entries of z = XY .
Theorem 7.22 (a) shows that z1, . . . , zf−1 is a regular sequence on S•(C); and
therefore the properties of Koszul complexes yield that
(7.28) Hj(S•(C) ⊗ K) = 0 for j ≥ 2, and

(7.29) H1(S•(C) ⊗ K)
∼=−→ (a) : zf

(a) , where (a) = I1(`̀̀) + (z1, . . . , zf−1).

Furthermore, the isomorphism of (7.29) is induced by the map

S•(C) ⊗
f−1∧

F ∗ −−−−→ S

(a)
,

which sends
∑

sk(−1)k+1Φ1 ∧ . . . ∧ Φ̂k ∧ . . . ∧ Φf to the class of sf . The assertion
of (7.26) follows from (7.28). We now turn our attention to (7.27).

It is clear that the element

(7.30) z =
f∑

i=1

Tk(−1)k+1Φ1 ∧ . . . ∧ Φ̂k ∧ . . . ∧ Φf

of S1(C) ⊗ ∧f−1
F ∗ is a one-cycle in the complex S+(C) ⊗ K. To establish the

isomorphism of (7.27), we show that the S−module H1(S•(C)⊗K) is generated by
the class of z and that the kernel of the S−module map

(7.31) S −−−−→ H1(S•(C) ⊗ K),

which sends 1 to the class of z, is equal to I. However, Theorem 7.22 (b) shows
that ((a) : zf ) = (a, Tf ); and therefore the composition

(7.32) S −−−−→ H1(S•(C) ⊗ K)
∼=−→ (a) : zf

(a)

of (7.31) and (7.29) is a surjection. Furthermore, Theorem 7.22 (c) shows that the
kernel of (7.32) is I. The isomorphism of (7.27) has been established and the proof
is complete. �
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Lemma 7.33. Adopt the notation of (7.1) with f ≤ g.

(a) Let U be the submatrix of Y which consists of rows 1 to f − 1. If I is the
R−ideal I1(XY ) + If−1(U) + If (Y ), then g + 1 ≤ grade I.

(b) If 1 ≤ t < f , then f + g − t + 1 + (g − f) ≤ grade
(
It(Y ) + I1(XY )

)
.

Proof.
(a) Let X̃ = [x1, . . . , xg−1], Ỹ be the submatrix of Y which consists of rows 1
to g − 1, and Ĩ be the R−ideal I1(X̃Ỹ ) + If−1(U) + If (Ỹ ). If f = g, then Ĩ =
I1(X̃U) + If−1(U), where X̃1×(f−1) and U(f−1)×f are matrices of indeterminates.
In this case, [8, Proposition 4.2] (see also (0.2)) shows that Ĩ has grade f = g. If
f < g, then

(7.34) g ≤ grade Ĩ

by induction on g; and therefore, we may always assume that (7.34) holds. Observe
further that

(7.35) g − f + 1 ≤ grade
(
If−1(U) + If (Ỹ )

)
.

(Indeed, if R0 is a domain, then (7.35) is obvious because If (Ỹ ) is a perfect prime
ideal of R of grade g − f and If−1(U) * If (Ỹ ). Moreover, (7.35) is true in full
generality; there is nothing to prove unless f + 2 ≤ g, and in this case a proof may
be obtained by using the notion of generic residual intersection (see [19, Section
3]), because If (Ỹ ) is a generic (g − f)−residual intersection of If−1(U).)

Fix an arbitrary prime ideal P which contains I. It suffices to show g + 1 ≤
depthRP . There are two cases. If xg ∈ P , then (xg, Ĩ) ⊆ P ; and therefore, g + 1 ≤
gradeP by (7.34). If xg /∈ P , then the localization Rxg

is equal to a polynomial
ring R′[y′

g1, . . . , y
′
gf , Ỹ ] for some ring R′, where the y′

gj are new indeterminates, the
entries of Ỹ are unchanged, and the ideal IRxg

is equal to (y′
g1, . . . , y

′
gf )+If−1(U)+

If (Ỹ ). The inequality g + 1 ≤ grade IRxg
follows from (7.35).

(b) The assertion is obvious if t = 1. Let P be a prime ideal containing It(Y ) +
I1(XY ). By induction on t, we may assume there is a (t − 1) × (t − 1) minor ∆ of
Y with ∆ /∈ P . The ring R∆ is a polynomial ring R′[X ′, Y ′] where X ′

1×(t−1) and
Y ′

(g−t+1)×(f−t+1) are matrices of indeterminates and I1(X ′) + I1(Y ′) ⊆ PR∆. It
follows that

gradePR∆ ≥(g − t + 1)(f − t + 1) + (t − 1)

=f + g − t + (g − t)(f − t)

≥f + g − t + (g − f + 1)(1)

=f + g − t + 1 + (g − f). �
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Theorem 7.36. Adopt the notation of (7.1). If f ≤ g and −1 ≤ i, then bi is
acyclic and H0(bi) is isomorphic to an ideal of H0(b0).

Proof. Recall the modules A = A(X,Y ), J = J(X,Y ), and N = N(X,Y ) from
(6.3). The proof proceeds by induction on g. Theorem 7.24 takes care of the
acyclicity of bi when f = g. We prove that H0(bi) is isomorphic to an ideal of A

at the end of the proof. In the mean time, we assume that f < g. Take X̃, Ỹ ,
and Ĩ as in the proof of Lemma 7.33 (a). Let b̃i = bi(X̃, Ỹ ), J̃ = I1(X̃Ỹ ) + If (Ỹ ),
Ã = R/J̃, Ñ = N(X̃, Ỹ ), and z = det(Y ′), where Y ′ is the f × f submatrix of Y

which consists of rows 1 to f − 1 and row g. Observe that the image of z in Ã is
equal to

∑f
j=1 ygj∆j , where ∆1, . . . ,∆f is a generating set for Ĩ Ã. Let X be the

1 × g matrix
[
X̃ 0

]
, b̄i = bi(X,Y ), and J = I1(XY ) + If (Y ).

The induction hypothesis guarantees that b̃i is acyclic for all i ≥ −1. Therefore,
the long exact sequence (6.12) yields Hj(b̄i) = 0 for all i and j with j ≥ 2 and
i ≥ 0. The following observations are necessary before we consider H1(b̄i).

(7.37) The R−ideal J̃ is perfect of grade g − 1.
(7.38) The Ã−ideal Ĩ Ã has positive grade.
(7.39) The element z is regular on Ã.

Buchsbaum and Eisenbud [11, Theorem 5.2] (see also (0.2)) have proved (7.37).
Assertion (7.38) follows from (7.37) because Lemma 7.33 shows that g ≤ grade Ĩ.
Hochster’s notion of general grade reduction ensures (7.39).

We saw in Observation 6.5 (a), together with (6.4), that there is an Ã−module
surjection

(7.40) H0(b̃i) = Si(Ñ) � Ĩi Ã

for all i ≥ 0. Since Ĩ has positive grade (by (7.38)), and H0(b̃i) is isomorphic to
an ideal of Ã (by induction), we conclude that (7.40) is an isomorphism. When the
isomorphism of (7.40) is applied to the exact sequence (6.13), the image of “Υ∗(Γ)”
in Ĩ Ã is z; consequently,

0 = H1(b̃i) → H1(b̄i) → Ĩi−1 Ã
z−−→ ĨiÃ

is exact. Use (7.39) in order to conclude that H1(b̄i) = 0 for all i ≥ 1.
The ideal J also contains z; consequently, the same argument as above yields

that the surjection H0(b̃−1) � J/J̃ of (6.14) is also an isomorphism. It follows that
H1(b̄0) = 0; and therefore, b̄i is acyclic for all i ≥ 0. The complex b̄g−f has length
g (see Observation 6.1), and it resolves a prefect R−module of projective dimension
g; thus, b̄−1 ∼= (b̄g−f

)∗ [−g] is also acyclic.
View R as a graded ring where each element of R0 has degree zero and every

entry of X and Y has degree one. The short exact sequence

0 → R
xg−→ R → R/(xg) → 0

induces a short exact sequence of graded complexes

0 → bi xg−→ bi → b̄i → 0.



COMPLEXES WHICH ARISE FROM A MATRIX AND A VECTOR 45

The corresponding long exact sequence of homology yields that multiplication by
xg is an automorphism of Hj(bi) for all i and j with 1 ≤ j and −1 ≤ i. Since
the homology of bi is finitely generated and graded, and xg has positive degree, we
conclude that bi is acyclic for i ≥ −1.

It remains to show that H0(bi) is isomorphic to an ideal of A. Fix i ≥ 1. It is easy
to see that the A−module H0(bi) has rank one. Indeed, if P is an associated prime of
A, then If−1(Y )A * P (see (7.38)); hence, Example 6.8 shows that H0(bi)P = AP .
Let j be an integer with g + 1 ≤ j ≤ f + g − 1, and let Fj be the radical of the
R−ideal generated by

(7.41) {x ∈ R | pdRx
H0(bi)x < j}.

A quick look at Example 6.9 shows that I1(XY ) + If+g−j(Y ) ⊆ Fj ; and therefore,
Lemma 7.33 (b) shows that

(7.42) j + 1 + (g − f) ≤ gradeFj .

It follows that H0(bi) is a torsion-free A−module. We conclude that the surjection

(7.43) H0(bi) � If−1(U)iA

is an isomorphism. (The matrix U is defined in the proof of Lemma 7.33.) Finally,
we consider the case i = −1. We have seen that H0(bg−f ) is a perfect R−module
of projective dimension g, and that

(7.44) H0(b−1) = Extg
R(H0(bg−f ), R).

It follows that H0(b−1) is a torsion-free A−module. If P ∈ Ass(A), then Example
6.8 shows that H0(bg−f )P is obtained from RP by modding out a regular sequence
of length g; thus, (7.44) yields that H0(b−1) has rank one. Recall, from (6.6), that
there is an A−module surjection

(7.45) H0(b−1) � If−1(columns 1 to f − 1 of Y ) + I1(XY )
I1(XY ) + If (Y )

.

Since it is easy to see that the A−ideal on the right side of (7.45) has positive grade,
it follows that (7.45) is an isomorphism. �

Section 8. The complexes bi
for g < f.

Retain the notation of (7.1) and let i be a positive integer. We saw in Theorem
7.36 that bi is acyclic if f ≤ g. In this section we show that bi is acyclic for g = f−1
(Theorem 8.3); but bi has non-trivial homology for g ≤ f − 2 (Observation 8.10).
The proof of Theorem 8.3 is obtained by modifying the proof of Theorem 7.36. We
begin with a calculation which is very similar to Theorem 7.22.



46 ANDREW R. KUSTIN

Lemma 8.1. Let R0 be a commutative noetherian ring; X1×(f−1), Y(f−1)×f , and
T = [T1, . . . , Tf ] be matrices of indeterminates; and S be the polynomial ring
R0[X, Y, T ]. Let z = [z1, . . . , zf ] be the product XY ; `̀̀ = [`1, . . . , `f−1] be the
product TY t; a be the sequence `1, . . . , `f−1, z1, . . . , zf−1; Ỹ be the submatrix of Y

which consists of columns 1 to f − 1; and K be the S−ideal (a, Tf ,det(Ỹ )). Then,
(a) a is a regular sequence on S,
(b) ((a) : zf ) = K and
(c) ((a) : Tf ) = (a, zf )S.

Proof. (a) Let Y be the matrix

X1 T2 0 · · · · · · 0

0 X2 T3
. . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . Xf−2 Tf−1 0

0 · · · · · · 0 Xf−1 Tf

 ,

and let α : S → R0[X, T ] be the R0[X, T ]−algebra map which carries Y to Y . The
assertion holds because the radical of α(a) is the ideal (X1, . . . ,Xf−1, T2, . . . , Tf ).
(b) Observe that there is a grade 2f − 3 deviation two Huneke-Ulrich Gorenstein
ideal K̃ such that Tf is regular on R/K̃, and K is the grade 2f −2 Gorenstein ideal
(K̃, Tf ). We know, from the theory of linkage, that there is an element s of S such
that

(8.2) (a) : K = (a, s) and (a) : s = K.

Consider S to be a graded polynomial ring under the following grading: all elements
of R0[y1f , . . . , yf−1 f ] have degree zero, Tf has degree two, and all other entries of
T , X, and Ỹ have degree one. Observe that zf is a linear element of S which is
also in (a) : K. Since each aj is quadratic, we conclude that s = zf ; and therefore,
(b) follows from (8.2).
(c) We know that

((a) : Tf ) ∩
(
(a) : det(Ỹ )

)
= ((a) : K) = (a, zf ) ⊆ ((a) : Tf ).

It suffices to show that ((a) : Tf ) ⊆
(
(a) : det(Ỹ )

)
. Suppose that s ∈ ((a) : Tf ).

Write s = s0 +s1 where s0 ∈ R0[T, Y ] and s1 ∈ (X)S. If we set X1 = · · · = Xf−1 =
0, then the hypothesis sTf ∈ (a) implies s0Tf ∈ (`1, . . . , `f−1). Since `1, . . . , `f−1, Tf

is a regular sequence, we conclude that s ∈ (X1, . . . ,Xf−1, `1, . . . , `f−1). It is easy
to see that this last ideal is contained in ((a) : det(Ỹ )). �
Theorem 8.3. Adopt the notation of (7.1) with g = f − 1. If −1 ≤ i, then bi is
acyclic.

Proof. The complex b−1 is the usual Koszul complex on the regular sequence x1,
. . . , xf−1; and thus, it is acyclic. The complex b0 is obtained from the mapping
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cone of two Koszul complexes
∧• Υ∗ : K′[−1] → K by splitting off the identity map:

0 0y y∧0 G∗ id−−−−−→ ∧0 F ∗

ξ

y υ

y∧1 G∗
∧1 Υ∗
−−−−−→ ∧1 F ∗

ξ

y υ

y
..
.

..

.

ξ

y υ

y∧f−1 G∗
∧f−1 Υ∗
−−−−−−→ ∧f−1 F ∗y υ

y
0

∧f F ∗.

The complex K was introduced in (7.13). We introduce the complex K′ at this
time; consider

∧f−1
G∗ to be in position zero. Observe that Hi(K) = 0 for i ≥ 2,

and that K′ is acyclic. One can easily show that b0
P is acyclic for all prime ideals

P of R with gradeP ≤ f + 1. Indeed, if I1(X) * P, then the Koszul complex
KP is acyclic and K′

P is split exact. If If−1(Y ) * P, then
∧f−1 Υ∗ induces an

isomorphism H0(K′
P ) ∼= H1(KP ). It follows, from the Acyclicity Lemma, that b0 is

acyclic.
We proceed as in the proof of Theorem 7.24. Fix i ≥ 0. Assume, by induction,

that H′(bi) is acyclic. We prove that H′(bi+1) is also acyclic. Lemma 7.14 applies;
so, (7.15) and (7.25) are both exact; consequently, it suffices to establish (7.26) and
(7.27). Adopt the notation introduced in the paragraph below (7.27); that is, let
S = S•F ∗ = R[T ] for some 1 × f matrix of indeterminates T , `̀̀1×(f−1) = TY t,
and z1×f = XY . It follows that S•(C) = S/I1(`̀̀). Lemma 8.1 (a) shows that
z1, . . . , zf−1 is a regular sequence on S•(C); thus (7.28) and (7.29) still hold for
(a) = I1(`̀̀) + (z1, . . . , zf−1); and therefore, (7.26) also holds.

View S as a graded polynomial ring where each element of R has degree zero
and each Ti has degree one. The isomorphism of (7.29) induces

(8.4) H1(S+(C) ⊗ K) ∼=
(

(a) : zf

(a)

)
+

.

Lemma 8.1 (b) gives ((a) : zf ) = (a, Tf ,det(Ỹ )). Since (det(Ỹ ))(T1, . . . , Tf−1) is
contained in (a, Tf ), we conclude that

(8.5)
(

(a) : zf

(a)

)
+

=
(a, Tf )

(a)
.

In the present context (7.32) becomes

(8.6) S −→ H1(S+(C) ⊗ K)
∼=−→
(

(a) : zf

(a)

)
+
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where the first map still sends 1 to the element z of (7.30) and the second map is
the isomorphism of (8.4). Use (8.5) to see that (8.6) is surjective; and use Lemma
8.1 (c) to see that the kernel of (8.6) is the ideal I of (7.27). �

There are significant differences between the complexes bi of Theorem 8.3 and
the complexes bi of Theorem 7.36.

Proposition 8.7. Adopt the notation of (7.1) with g = f − 1.

(a) The R−module H0(b0) is not perfect.
(b) If i ≥ 1, then the module H0(bi) is not isomorphic to an ideal of the ring

H0(b0).

Proof. Let A denote H0(b0) = R/I1(XY ).
(a) The projective dimension of A is f , but grade I1(XY ) = f − 1.
(b) It is clear that the module N(X,Y ) of (6.3) is isomorphic to Ig(Y )⊗R(R/I1(XY )).
Observation 6.5 shows that

(8.8) H0(bi) ∼= Si

(
Ig(Y )

I1(XY )Ig(Y )

)
for positive i. Let Ỹ be the submatrix of Y which consists of rows 2 to f − 1 and
columns 3 to f , and let x = x1 det(Ỹ ). We will show that

(8.9)
(

Ig(Y )
I1(XY )Ig(Y )

)
x

∼= Ax ⊕ Ax.

Indeed, routine row and column operations show that there exist bases for Fx and
Gx, a ring R̃, and indeterminates y′

1, . . . , y
′
f such that Rx is the polynomial ring

R̃[y′
1, . . . , y

′
f ],

Ξx = [ 1 0 . . . 0 ] and Υx =

 y′
1 y′

2 y′
3 . . . y′

f

0 I

 .

It is now clear that Ax = Rx/(y′
1, . . . , y

′
f ) and that the left side of (8.9) is isomorphic

to
(y′

1, y
′
2)

(y′
1, . . . , y

′
f )(y′

1, y
′
2)

,

which is certainly isomorphic to the right side of (8.9). �
Observation 8.10. Adopt the notation of (7.1) with g ≤ f − 2. If 0 ≤ i, then
H1(bi) 6= 0.

Proof. The beginning of b0 is isomorphic to the beginning of the Koszul complex
on the entries of XY :

b0 : · · · →
f−2∧

G∗ ⊕
f−3∧

F ∗ →
f−2∧

F ∗ υ−→
f−1∧

F ∗ υ−→
f∧

F ∗.
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Since the entries of XY do not form a regular sequence, it is clear that b0 has
non-zero homology at

∧f−1
F ∗.

Fix the integer i ≥ 1. Let Φ1, . . . ,Φf be a basis for F ∗ (as was used in the proof
of Theorem 7.24),

∆j = (−1)j+1 det(the g × g submatrix of Y consisting of columns 1, . . . , ĵ , . . . , g + 1),

for 1 ≤ j ≤ g + 1, and

u = (Φf )i ⊗
g+1∑
j=1

(−1)j+1∆jΦ1 ∧ . . . ∧ Φ̂j ∧ . . . ∧ Φf ∈ SiF
∗ ⊗

f−1∧
F ∗ ⊗

0∧
G∗.

Observe that

(8.11) (1 ⊗ υ ⊗ 1)u = 0 ∈ SiF
∗ ⊗

f∧
F ∗ ⊗

0∧
G∗,

because

XY



∆1
...

∆g+1

0
...
0


= X0 = 0.

The element ∂id u is in Lf−2
i+1 ⊗∧0

G∗. We will prove that

(8.12) there is an element u′ ∈ Lf−1
i ⊗∧1

G∗ such that ∂id u + u′ ∈ Z1(bi); but,
(8.13) ∂id u + u′ is not a boundary in bi for any u′ ∈ Lf−1

i ⊗∧1
G∗.

We know, from (5.12), that d(∂id u) = ∂id (1 ⊗ υ ⊗ 1) s ∂id u ∈ Lf−1
i+1 ⊗ ∧0

G∗.
On the other hand, Proposition 1.6 tells us that s ∂id u = u − ∂id su; thus, we see
from (8.11) that d (∂id u) = ∂id (1 ⊗ υ ⊗ 1) ∂id(su). The last sentence in the proof
of Observation 6.5 (a) finishes the proof of (8.12).

We establish (8.13) by showing that ∂id u is not in the image of

Lf−3
i+1 ⊗∧0

G∗

d

y
Lf−2

i ⊗∧1
G∗ d−−−−→ Lf−2

i+1 ⊗∧0
G∗;

indeed, we show that s ∂id u is not in the image of

SiF
∗ ⊗∧f−2

F ∗ ⊗∧0
G∗

1⊗υ⊗1

y
Si−1F

∗ ⊗∧f−1
F ∗ ⊗∧1

G∗ ∂Υ∗−−−−→ SiF
∗ ⊗∧f−1

F ∗ ⊗∧0
G∗.
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Since s ∂id u = u−∂id su, it suffices to show that u 6= (1 ⊗ υ ⊗ 1)A+∂Υ∗ B +∂id C
for any

A ∈ SiF
∗ ⊗

f−2∧
F ∗ ⊗

0∧
G∗, B ∈ Si−1F ∗ ⊗

f−1∧
F ∗ ⊗

1∧
G∗, and C ∈ Si−1F ∗ ⊗

f∧
F ∗ ⊗

0∧
G∗.

Observe that (1 ⊗ υ ⊗ 1)A ∈ I1(X)
(
SiF

∗ ⊗∧f−1
F ∗ ⊗∧0

G∗
)

, the basis vector

Φ = (Φf )i ⊗ Φ2 ∧ . . . ∧ Φf

does not appear in ∂id C, and the coefficient of Φ in ∂Υ∗ B is an element of the
ideal (y1f , . . . , ygf ). On the other hand, the coefficient of Φ in u is ∆1. The proof
is complete because ∆1 /∈ I1(X) + (y1f , . . . , ygf ). �

Section 9. Summary of the generic case.

In this section we collect everything which is known about the complexes Bi

and bi in the generic case. In Theorem 9.2 we consider the cases which pertain to
divisors on varieties of complexes. Our main contribution to this theory is assertion
(a). The other assertions either follow from (a) or have been proved by DeConcini
and Strickland, or Bruns, or Huneke and Ulrich.

Data 9.1. Let f and g be positive integers, R0 be a commutative noetherian
ring, X1×g and Yg×f be matrices of indeterminates, and R be the polynomial ring
R0[X,Y ]. View

F
Y−→ G and G

X−→ R

as maps of free R−modules. Form complexes Bi = Bi(X,Y ) and bi = bi(X,Y ) as
described in sections 2 and 5. Let

BBB =
{

b, if f < g, and
B, if g ≤ f,

and N =
{

g − f − 1, if f < g, and
f − g + 1, if g ≤ f.

Let J be the R−ideal defined in (0.1) and I ′ be the (R/J)−ideal defined in (0.4).
Let m0 = min{f, g},m1 = max{f, g}. Let Y ′′ be the{

g × (f − 1) submatrix of Y consisting of columns 1 to f − 1, if f < g

(g − 1) × f submatrix of Y consisting of rows 1 to g − 1, if g ≤ f ;

and let I and I ′′ be the (R/J)−ideals defined by

I =
Im0−1(Y ′′) + J

J
and I ′′ =

{
I, if f < g, and
I + (xg)(R/J), if g ≤ f.

Theorem 9.2. Adopt the notation of (9.1).

(a) If −1 ≤ i, then the complex BBBi is acyclic, H0(BBBi) is a torsion-free (R/J)−module
of rank one, and

H0(BBBi) ∼=


I ′′, if i = −1,
R/J, if i = 0, and
Si(I ′), if 1 ≤ i.
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(b) If i is any integer, then BBBi ∼= (BBBN−i
)∗ [−m1].

(c) The R−module H0(BBBi) is perfect if and only if −1 ≤ i ≤ N + 1. In the case
that H0(BBBi) is perfect, then it has projective dimension m1.

(d) If R0 is a Gorenstein ring, then H0(BBBN ) is the canonical module of R/J.
(e) The natural map from the ith symmetric power of I ′ to the ordinary ith

power of I ′ is an isomorphism for all i ≥ 1.
(f) If R0 is a domain, then J, I ′, and I ′′ are all prime ideals of R.
(g) If 2 ≤ m0 and R0 is a normal domain, then the following statements also

hold.
(i) The ring R/J is also a normal domain.
(ii) The (R/J)−ideals I ′′ and (I ′)i are divisorial for all i ≥ 1.
(iii) The symbolic and ordinary ith powers of I ′ are equal for all i ≥ 1.
(iv) The inclusion map R0 → R/J induces an isomorphism

C` (R/J) ∼= C` (R0) ⊕ Z.

(v) The summand Z in C` (R/J) is generated by [I ′].
(vi) The equation [I ′] + [I ′′] = 0 holds in C` (R/J).
(vii) Let M be a reflexive (R/J)−module of rank one with [M ] = i[I ′] in

C` (R/J) for some integer i. Assume that, either R0 is a Gorenstein
ring, or else, R0 is a Cohen-Macaulay ring and −1 ≤ i. Then M is a
Cohen-Macaulay (R/J)−module if and only if −1 ≤ i ≤ N + 1.

Note. Theorem 9.2 shows that the complexes {BBBi} satisfy properties (0.6) – (0.11).
If g ≤ f, then the parameters N , s, and ρ have the same meaning as they have for
the complexes Ci and Di. If f < g, then these parameters were defined in (0.14) in
such a way that properties (0.6) – (0.11) continue to hold.

Proof. (a) In Theorems 4.2 and 7.36 we saw that BBBi is acyclic and that H0(BBBi) is
isomorphic to an ideal of R/J . Surjections

H0(BBB−1) � I ′′ and H0(BBBi) � Si(I ′) � (I ′)i

are produced in Observations 3.7 and 6.5. The ideals I ′ and I ′′ have positive grade;
hence all of these surjections are isomorphisms.
(b) The duality of the family {BBBi} is established in Propositions 2.12 and 5.14.
(c) The module H0(BBBi) is torsion-free over R/J . Since J is a perfect R−ideal of
grade m1, it follows that the annihilator of the R−module H0(BBBi) has grade m1.
Every map in the resolution BBBi is homogeneous of positive degree (see Figures 3.4
and 6.2); thus, the length of BBBi (which may be found in Observations 3.1 and 6.1)
is the projective dimension of H0(BBBi).
(d) This assertion is an immediate consequence of (b).
(e) The proof of (e) is contained in the proof of (a).
(f) DeConcini and Strickland [12] used Hodge Algebra techniques to prove that
J is a prime ideal. An independent proof (based only on the fact that J is perfect
of grade m1) can be formulated along the lines of the proof of [9, Theorem 2.10].
Bruns [7, Lemma 2.3] has proved that I ′ and I ′′ are prime ideals.
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(g) Assertion (i) is proved in [12]. To prove (ii) and (iii) it suffices to show that
the (R/J)−modules (I ′)i satisfy the Serre condition (S2). To this end we observe
that

j + 2 ≤ gradeFj for m1 ≤ j ≤ f + g − 1,

where Fj is the ideal of (4.7) or (7.41). Indeed, the grade of Fj is estimated in (4.8)
for g ≤ f , and in (7.42) for f < g. Assertions (iv), (v), and (vi) are all proved in
[7, Theorem 3.1]. Assume that R0 is a Cohen-Macaulay ring and consider (vii). It
is clear that M is a Cohen-Macaulay module if −1 ≤ i ≤ N + 1 and that M is not
Cohen-Macaulay if N + 2 ≤ i. Now suppose that R0 is Gorenstein. Huneke and
Ulrich have produced an argument (see [20, Theorem 3.5] or [26, Theorem 2.6])
which shows that M is not Cohen-Macaulay if i ≤ −2. �

We conclude this section by summarizing what is known about the complexes
bi when g ≤ f and the complexes Bi when f < g. These cases contain almost no
information about divisors on varieties of complexes.

Theorem 9.3. Adopt the notation of (9.1).

(a) If g = f and −1 ≤ i, then the complex bi is acyclic, H0(bi) is a torsion-free
(R/J)−module of rank one, and

H0(bi) ∼=


I ′, if i = −1,
R/J, if i = 0, and

Si

(
If−1(Y

′′)+J
J

) ∼= (If−1(Y ′′))i (R/J), if 1 ≤ i.

(b) If g = f − 1 and −1 ≤ i, then the complex bi is acyclic, and

H0(bi) ∼=


R/I1(X) ∼= (D)+I1(XY )

I1(XY ) , if i = −1,

R/I1(XY ), if i = 0, and

Si

(
Ig(Y )

I1(XY )Ig(Y )

)
, if 1 ≤ i,

where D is the determinant of the submatrix of Y which consists of columns
1 to f − 1.

(c) If g ≤ f − 2 and 0 ≤ i, then H1(bi) 6= 0.
(d) If f ≤ g − 1 and min{f − g + 1,−1} ≤ i, then the complex Bi is acyclic,

H0(Bi) is a torsion-free (R/I1(XY ))−module of rank one, and

H0(Bi) ∼=


(xg, ∆)+I1(XY )

I1(XY ) , if i = −1 and f = g − 1,

R/I1(XY ), if i = 0, or if f − g + 1 ≤ i ≤ −1, and

Si

(
I1(X)

I1(XY )

) ∼= (I1(X))i
(

R
I1(XY )

)
, if 1 ≤ i,

where ∆ is the determinant of the (g − 1) × (g − 1) matrix which consists
of rows 1 to g − 1 of Y in the case that g − 1 = f .

Proof. The complexes are shown to be acyclic in Theorems 7.36, 8.3, and 4.2,
respectively.



COMPLEXES WHICH ARISE FROM A MATRIX AND A VECTOR 53

(a) The calculation of H0(bi) for i ≥ 1 is made in (7.43) and the calculation of
H0(b−1) is completed in (7.45) .
(b) The map which sends 1 to D induces an isomorphism

(9.4)
R

I1(X)
∼= (D) + I1(XY )

I1(XY )
.

Use (5.2) to see that H0(b−1) is isomorphic to the left side of (9.4). The calculation
of H0(bi) for positive i may be found in (8.8).
(c) See Observation 8.10.
(d) The module H0(B−1), for f = g−1, may be read from (4.11). A quick look at
(2.2) yields that H0(Bi) ∼= R/I1(XY ) for i = 0 or f−g+1 ≤ i ≤ −1. For i ≥ 1, the
module H0(Bi) is calculated in Observation 3.7, together with Observation 3.6 (c).
The fact that the natural map

Si

(
I1(X)

(
R

I1(XY )

))
� (I1(X))i

(
R

I1(XY )

)
is an isomorphism may be read from (4.9). �

Remarks 9.5. (a) We appear to have two descriptions of H0(B−1) for f ≤ g− 2
because (4.11) gives

H0(B−1) ∼= (xg) + I1(XY )
I1(XY )

and Theorem 9.3 (d) gives H0(B−1) ∼= R/I1(XY ). These isomorphisms are con-
sistent because (xg) + I1(XY ) is generated by a regular sequence.
(b) Adopt the notation of (9.1) with R0 a normal domain and f = g ≥ 2. We
know that the complex Bi resolves an element of C` (R/J) for each i ≥ −1. It is
easy to see that B0 ∼= b0 and that B1 ∼= b−1. On the other hand, H0(bi) is not
divisorial for any i ≥ 1. Indeed, we will show that H0(bi)x is isomorphic to a height
two ideal in (R/J)x, where x is the element xg of R. It is easy to see that the ring
Rx is equal to the polynomial ring R̃[Y ′′, Z], where R̃ = R0[X,x−1], Y ′′

(f−1)×f and
Z1×f are matrices of indeterminates, Y ′′ is the submatrix of Y consisting of rows
1 to f − 1, and Z is the product XY . The ideal JRx is equal to I1(Z)Rx; thus,
(R/J)x is isomorphic to the polynomial ring R̃[Y ′′]. Theorem 9.3 (a) shows that

H0(bi)x
∼= (If−1(Y ′′))i (R/J)x

∼= (If−1(Y ′′))i
R̃[Y ′′].

It is clear that the R̃[Y ′′]−ideal If−1(Y ′′) has height two.

Suppose that R0 is a normal domain in the situation of Theorem 9.3 (d). If
f ≤ g − 2, then Hochster’s notion of general grade reduction [14] (see also [4,
Proposition 6]) shows that the inclusion R0 → R/I1(XY ) induces an isomorphism
C` (R0) ∼= C` (R/I1(XY )). However, it is interesting to notice that properties
(0.6) – (0.12) all hold for the family {Bi} when f = g − 1. Huneke and Ulrich [20]
have explained why some of these properties hold for generic residual intersections
(i.e. g ≤ f); however, these properties hold for the families {Bi}, {Ci}, and {Di}
even when f is one smaller than the least f for which the notion “f−residual
intersection” is defined.



54 ANDREW R. KUSTIN

Proposition 9.6. Adopt the notation of (4.1) with R0 a normal domain and f =
g − 1 ≥ 2. Let A = R/I1(XY ), I ′ = I1(X)A, and I ′′ = (xg,∆)A for ∆ defined in
Theorem 9.3 (d). The following statements hold.

(a) The ring A is a normal domain.
(b) The A−ideals (I ′)i and I ′′ are divisorial for all i ≥ 1.
(c) The inclusion R0 → A induces an isomorphism C` (A) ∼= C` (R0) ⊕ Z.
(d) The summand Z in C` (A) is generated by [I ′].
(e) The equation [I ′] + [I ′′] = 0 holds in C` (A).

Note. The other conclusions of Theorem 9.2 also hold for A provided the notation
is adjusted correctly.

Proof. Avramov [4, Proposition 11] has proved (a) and (c).
(d) Avramov’s proof shows that [If (Y )A] generates the summand Z in C` (A).
There is no difficulty showing that If (Y )A ∼= I1(X)A.
(b) If Fj is the ideal defined in (4.7), then it suffices to show that gradeFj ≥ j +2
for f + 1 ≤ j ≤ f + g − 1. On the other hand, the inequality of line (4.8) applies
because f + 1 ≤ j implies g ≤ j.
(e) It is clear that I ′ ∩ I ′′ is equal to the principal ideal (xg)A. �

Section 10. The non-generic case.

We have seen (in Theorems 4.2 and 7.36) that the complexes Bi and bi are acyclic
when the data (Ξ,Υ) is generic. In the present section we offer some conditions on
non-generic data which are sufficient to ensure that the complexes Bi and bi remain
acyclic. In the final result of the paper (Theorem 10.17) we interpret the complexes
{Bi} in the context of residual intersection. An expanded form of arguments similar
to those of this section may be found in [26, Sections 9 and 11].

We first consider those complexes bi which have the same length as b0. In this
case the principal of the persistence of perfection (see, for example, [9, Theorem
3.5] or [15, Proposition 6.14]) applies.

Proposition 10.1. Adopt the notation of (6.3) with 1 ≤ f ≤ g. Assume that J

is a proper ideal of R with gradeJ ≥ g. If −1 ≤ i ≤ g − f , then bi is acyclic and
H0(bi) is a perfect R−module of projective dimension g. �

In order to treat complexes bi which are longer than b0 we must consider the
lower order minors of the map Υ.

Definition 10.2. The data (Ξ,Υ) of (5.1) is called b−robust if

(a) 1 ≤ f ≤ g,
(b) grade (I1(ΞΥ) + If (Υ)) ≥ g, and
(c) grade (I1(ΞΥ) + It(Υ)) ≥ f + g + 1 − t for all t with 1 ≤ t ≤ f − 1.

Theorem 10.3. Adopt the notation of (6.3). If (Ξ,Υ) is b−robust and i ≥ −1,
then

(a) bi is acyclic, and
(b) H0(bi) is a torsion-free A−module of rank one.
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Proof. If −1 ≤ i ≤ g − f , then assertion (a) is proved in Proposition 10.1. The
torsion-freeness of H0(bi) now follows readily; see, for example, Observation 1.19.
The rank of H0(bi) may be calculated as in the proof of Theorem 7.36. Henceforth,
i is a fixed integer with g − f + 1 ≤ i.

We may assume, without loss of generality, that the ring R is local. The result
holds for f = 1 by Example 6.7. The proof continues by induction on f . Lemma
7.33 (b) and Theorem 7.36 show that the hypotheses and conclusions all hold in the
generic case. The arbitrary case may be obtained from the generic case by modding
out a regular sequence. Consequently, our proof proceeds as follows. Assume that
the conclusions (a) and (b) hold for data (Ξ̃, Υ̃) over the local ring R̃ and that z is
a regular element of R̃ with the property that (Ξ,Υ) is b−robust data over the ring
R = R̃/(z) where Ξ = Ξ̃ ⊗R̃ 1R and Υ = Υ̃ ⊗R̃ 1R. We prove that the conclusions
(a) and (b) hold for the data (Ξ,Υ).

We follow our usual convention and let J, b, A, J̃, b̃, Ã, and b̄ mean J(Ξ,Υ),
b(Ξ,Υ), A(Ξ,Υ), J(Ξ̃, Υ̃), b(Ξ̃, Υ̃), A(Ξ̃, Υ̃), and b(Ξ,Υ), respectively. We have
already observed that b0 = b̃0 ⊗R̃ R is acyclic. It follows that TorR̃

j (Ã, R) = 0 for
all j ≥ 1. In particular, z is regular on Ã. Since H0(b̃i) is a torsion-free Ã−module,
we conclude that z is regular on H0(b̃i); and therefore, bi is acyclic.

Now we show that H0(bi) is a torsion-free A−module. For each integer j, with

g + 1 ≤ j ≤ g + f − 1,

let Fj be the radical of the R−ideal generated by {x ∈ R | pdRx
H0(bi)x < j}. It

suffices to show that gradeFj ≥ j + 1. Once we establish that

(10.4) I1(ΞΥ) + If+g−j(Υ) ⊆ Fj ,

then the hypothesis that (Ξ,Υ) is b−robust completes the proof. We know from
(6.3) and Observation 6.5 that I1(ΞΥ) annihilates H0(bi); thus I1(ΞΥ) ⊆ Fj . By
mimicking Example 6.9, we are able to show that

(10.5) I1(Υ) ⊆ Ff+g−1.

Indeed, suppose that the ideal I1(Υ) is equal to all of the ring R. One may choose
bases for F and G so that

Ξ = [Ξ′ x′ ] , and Υ =
[

Υ′ 0
0 1

]
for some element x′ of R and some matrices Ξ′

1×(g−1) and Υ′
(g−1)×(f−1) with entries

in R. Observe that J = (x′,J(Ξ′,Υ′)) . The grade of J is positive; thus, there is an
x′′ ∈ J(Ξ′,Υ′) so that x = x′ + x′′ regular on R. One may easily check that the
data (Ξ,Υ) is b−robust, where Ξ = Ξ′ ⊗R 1R and Υ = Υ′ ⊗R 1R for R = R/(x).
The induction hypothesis on f ensures that

pdR H0(b̄i) ≤ (f − 1) + (g − 1) − 1.
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On the other hand, x annihilates the R−module H0(bi), and H0(bi) and H0(b̄i) are
isomorphic as R−modules. It follows from homological algebra (see, for example,
[21, Theorem 3 in Part III]) that

pdR H0(bi) = 1 + pdR H0(bi) ≤ f + g − 2.

The inclusion of (10.5) has been established. The technique can be iterated to estab-
lish (10.4), and thereby complete the proof that H0(bi) is a torsion-free A−module.
The calculation of rankH0(bi) which is given in the proof of Theorem 7.36 can be
modified to work under the present hypotheses. �

Remark 10.6. Continue to assume the hypotheses of Theorem 10.3. Let Y be the
matrix of Υ with respect to some bases for F and G. Recall, from Observation 6.5
together with (6.4) and (6.6), that there are A−module surjections

(10.7) H0(b−1) � If−1(columns 1 to f − 1 of Y )A, and

(10.8)

H0(bi) � Si

(
If−1(rows 1 to f − 1 of Y )A

)
�
(
If−1(rows 1 to f − 1 of Y )

)i

A.

If the R−ideal
(
If−1(columns 1 to f − 1 of Y ) + J

)
has grade at least g + 1, then

(10.7) is an isomorphism. If grade
(
If−1(rows 1 to f − 1 of Y ) + J

)
≥ g + 1, then

each surjection in (10.8) is an isomorphism for all i ≥ 1.

Our discussion of the complexes Bi is completely parallel to the above discussion;
consequently we will omit most details.

Proposition 10.9. Adopt the notation of (3.5) with 0 ≤ g − 1 ≤ f . Assume that
J is a proper ideal of R with gradeJ ≥ f . If −1 ≤ i ≤ f −g+2, then Bi is acyclic
and H0(Bi) is a perfect R−module of projective dimension f . �
Definition 10.10. The data (Ξ,Υ) of (2.1) is called B−robust if

(a) 0 ≤ f,
(b) 1 ≤ g,
(c) grade (I1(ΞΥ) + Ig(Υ)) ≥ f , and
(d) grade (I1(Ξ) + It(Υ)) ≥ f + g + 1 − t for all t with 1 ≤ t ≤ g − 1.

Remark. If f ≤ g − 2, then hypothesis (d) in the definition of B−robust is
equivalent to

grade I1(Ξ) ≥ g and grade (I1(Ξ) + It(Υ)) ≥ f + g + 1 − t for 1 ≤ t ≤ f.

Theorem 10.11. Adopt the notation of (3.5). If (Ξ,Υ) is B−robust and i ≥ −1,
then

(a) Bi is acyclic, and
(b) H0(Bi) is a torsion-free A−module of rank one.
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Proof. The boundary cases f = 0 and g = 1 are treated in Observation 3.10 and
Example 3.9, respectively. The most intricate part of the proof involves showing
that

(10.12) gradeFj ≥ j + 1

for f + 1 ≤ j ≤ g + f − 1, where Fj is the radical of the R−ideal generated by

{x ∈ R | pdRx
H0(Bi)x < j},

for a fixed positive integer i. Example 3.11 shows that

(10.13) I1(Ξ) ⊆ Fj for all j with f + 1 ≤ j.

If f + 1 ≤ j ≤ g − 1, then (10.13) implies (10.12). If max{g, f + 1} ≤ j ≤
f + g − 1, then an argument based on Example 3.12 shows that If+g−j(Υ) ⊆ Fj ;
and therefore, the hypothesis that (Ξ,Υ) is B−robust yields (10.12). �

Remark 10.14. Continue to assume the hypotheses of Theorem 10.11. Let X
and Y be matrices which represent Ξ and Υ. Recall, from Observation 3.7 together
with Observation 3.6 and (3.8), that there are A−module surjections

(10.15) H0(B−1) �
(
(xg) + Ig−1(rows 1 to g − 1 of Y )

)
A, and

(10.16) H0(Bi) � S1

(
I1(X)A

)
�
(
I1(X)

)i

A.

If grade
(
(xg) + Ig−1(rows 1 to g − 1 of Y ) + J

)
≥ f + 1, then (10.15) is an iso-

morphism. If grade
(
I1(X) + Ig(Y )

)
≥ f + 1, then each surjection in (10.16) is an

isomorphism for all i ≥ 1.

Remark. There are at least three directions in which one can generalize the above
results. We gave conditions on all of the ideals It(Υ) which guarantee that all of the
complexes Bi and bi, for i ≥ −1, are acyclic. By only looking at some It, one can
guarantee that some Bi and bi are acyclic. Also, if one imposes a slightly weaker
hypothesis on the grade of the minors of Υ, then one can prove that the complexes
are acyclic without proving that the zeroth homology is torsion-free. Finally, if one
imposes a stronger hypothesis on the grade of the minors of Υ, then one can prove
that the zeroth homology satisfies the Serre-type condition (S̃n) for some n ≥ 2. In
particular, one can prove that the zeroth homology is reflexive. All of these ideas
are carried out in complete detail (in a somewhat different context) in [26, Sections
9 and 10].

We conclude by interpreting the complexes {Bi} in the context of residual inter-
sections. The relevant definitions may be found in [17] or [19]. Let K(Z) represent
the Koszul complex associated to the map Z : E → R; in other words, K(Z) is the
complex

· · · →
3∧

E
∂Z−−→

2∧
E

∂Z−−→ E
Z−→ R.
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Theorem 10.17. Let I be a grade g complete intersection ideal in the Cohen-
Macaulay local ring (R,m, k), let J = (K : I) be an f−residual intersection, and let
t denote the minimal number of generators of I/K. Assume that 1 ≤ t ≤ g ≤ f . If
either

(i) the ring R is Gorenstein, or else,
(ii) the residual intersection J = (K : I) is geometric,

then there exist matrices X1×t, Yt×(f−g+t), and Z1×(g−t) with entries in m such
that the following statements hold.

(a) The ideal J is equal to I1(Z) + I1(XY ) + It(Y ).
(b) The complex B0(X,Y ) ⊗ K(Z) is a minimal resolution of R/J by free

R−modules.
(c) If 1 ≤ i ≤ f−g+2, then Bi(X,Y )⊗K(Z) is the minimal R−free resolution

of Si(I/K). If, in addition, the residual intersection is geometric, then
Si(I/K) ∼= Īi, where Ī represents the ideal (I + J)/J of R/J.

Proof. Choose a generating set z1, . . . , zg−t, x1, . . . , xt for I with z̄1, . . . , z̄g−t a basis
for mI+K

mI and x̄1, . . . , x̄t is a basis for I
mI+K . Let Z be the matrix [z1, . . . , zg−t] and

X be the matrix [x1, . . . , xt]. There exists a matrix Yt×(f−g+t) with entries in m,
so that K is generated by I1(Z)+ I1(XY ). If hypothesis (ii) is in effect, then (a) is
stated as Theorem 4.8 of [8]. The techniques of [26, Section 11] (which are borrowed
from [19]) establish (a) under hypothesis (i). The grade of J ′ = I1(XY ) + It(Y ) is
at most f − g + t (by (0.2)); but J , which has grade f by hypothesis, is equal to
J ′ + (z1, . . . , zg−t). It follows that J ′ has grade f − g + t and that z1, . . . , zg−t is
a regular sequence on R/J ′. Fix an integer i with −1 ≤ i ≤ f − g + 2. We may
apply Proposition 10.9 and Observation 1.19 in order to conclude that Bi(X,Y )
is acyclic and that z1, . . . , zg−t is a regular sequence on H0(Bi(X,Y )). It follows
that Bi(X,Y ) ⊗ K(Z) is acyclic. Use Observations 3.7 (a) and 3.6 (c) in order to
see that

H0(Bi(X,Y ))⊗ R
I1(Z)

∼=


R
J′ ⊗ R

I1(Z)
∼= R

J , if i = 0, and

Si

(
I1(X)

I1(XY )

)
⊗ R

I1(Z)
∼= Si

(
I1(X)

I1(XY ) ⊗ R
I1(Z)

)
, if i ≥ 1.

Assertion (b) is established; we now prove (c) . Recall that z1, . . . , zg−t is a regular
sequence on R/I1(X). It follows that

I1(X)
I1(XY ) ⊗ R

I1(Z)
∼= I

K .

Finally, we suppose that J = (K : I) is a geometric residual intersection. In this
case, Ī has positive grade and I ∩J = K. Consider the natural map Si(I/K) � Īi.
The (R/J)−module Si(I/K) has rank one because I/K is isomorphic to the ideal
Ī of R/J ; furthermore, Observation 1.19, applied to the R−module H0(Bi(X,Y )),
shows that Si(I/K) is torsion-free as an (R/J)−module. �
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