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1. THE STATEMENT OF THE MAIN RESULT.

Theorem. Let P be a commutative Noetherian ring and F be a resolution by finitely
generated free P-modules. Assume that F0 = P, F has length four, and F is self-
dual, that is, F ∼= HomP(F,P). Then F is a Differential Graded Algebra with Di-
vided Powers and Poincaré Duality.

This result is already known if P is a local Gorenstein ring and F is a minimal res-
olution. The purpose of the present project is to remove the unnecessary hypotheses
that P is local, P is Gorenstein, and F is minimal.

2. DEFINE THE WORDS AND GIVE AN EXAMPLE.

First, I give an example (and simultaneously make sure that the meaning of the
words is clear.) The Koszul complex is an example of a (resolution) which is a
DG-algebra with divided powers and Poincaré duality.

• Let K to be a free P-module of rank n and d : K → P be a P-module homomor-
phism. There is a multiplication on the Koszul complex

0→
∧n K→ ··· →

∧2 K→
∧1 K→

∧0 K.

This multiplication respects the grading in the sense that: an element in homological
position i is a sum of i-forms and if one multiplies an i-form by a j-form, one get
an (i+ j)-form in homological position i+ j.
(In general, the multiplication in a DG-algebra resolution respects the grading.)

• The multiplication in the Koszul complex satisfies the product rule:

di+ j(xi∧ x j) = di(xi)∧w j +(−1)ixi∧d j(x j).

(This always happens in a DG-algebra.)

• The multiplication in the Koszul complex associates, distributes over addition,
and is graded commutative:

– homogeneous elements of even degree commute with everything, and
– two homogeneous elements of odd degree anti-commute.

(This always happens in a DG-algebra.)
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• Poincaré Duality: The multiplication in the Koszul complex in complementary
degrees: ∧i K⊗

∧n−i K→
∧n K

is a perfect pairing. (When this happens in a DG-algebra F , one says that F exhibits
Poincaré Duality.)

• Divided Powers: An algebra F has Divided Powers if for each homogeneous
element x (of even degree) there is a system of elements x(n), for 0 ≤ n, such that
x(n) behaves like xn/n! would behave if xn/n! were in F . (For an official list of
axioms, look in Gulliksen and Levin, or Eisenbud, or . . . .)

For the situation of this talk

0→ F4
d4−→ F3

d3−→ F2
d2−→ F1

d1−→ F0,

there is only one type of Divided Power appearing, namely x(2)2 ∈ F4 for x2 ∈ F2.
Here is the point, x2

2 is automatically 2 times some element of F4 because
– d4(x2

2) = 2d2(x2)× x2

– d2(x2)× x2 is already a cycle.
– some element of F4 is sent to d2(x2)× x2

– the map d4 is an injection; so x2
2 = 2(some element)

If F has a DG-structure then x2
2 = 2(some element) for all x2 ∈ F2 and this is

true independent of characteristic and independent of whether 2 is a unit or not. Of
course, this “some element” is called x(2)2 .

I really like divided powers. I want to calculate explicitly the divided powers in∧•K, when K is a free module of rank 4. (The next few words are propaganda;
but if you have not thought about it before, it might be useful propaganda.) Let
e1, . . . ,e4 be a basis for K. Square an arbitrary element of

∧2 K:(
p1,2e1∧ e2 + p1,3e1∧ e3 + p1,4e1∧ e4 + p2,3e2∧ e3 + p2,4e2∧ e4 + p3,4e3∧ e4

)2

= 2
(

p1,2 p3,4− p1,3 p2,4 + p1,4 p2,3

)
e1∧ e2∧ e3∧ e4.

= 2pf


0 p1,2 p1,3 p1,4
−p1,2 0 p2,3 p2,4
−p1,3 −p2,3 0 p3,4
−p1,4 −p2,4 −p3,4 0

e1∧ e2∧ e3∧ e4.

Conclude (or define)(
p1,2e1∧ e2 + p1,3e1∧ e3 + p1,4e1∧ e4 + p2,3e2∧ e3 + p2,4e2∧ e4 + p3,4e3∧ e4

)(2)

= pf


0 p1,2 p1,3 p1,4
−p1,2 0 p2,3 p2,4
−p1,3 −p2,3 0 p3,4
−p1,4 −p2,4 −p3,4 0

e1∧ e2∧ e3∧ e4.
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The moral: The “right way” (i.e., painless way – the signs take care of themselves)
to think about Pfaffians is by way of divided powers in an exterior algebra. In the
same sense that the “right way” to think about determinants is by way of multipli-
cation in an exterior algebra.

3. WHY WOULD ONE WANT TO HAVE DG-ALGEBRA RESOLUTIONS?

1. Suppose one wants a map of complexes

α :
∧•K→ F

from a Koszul complex
∧•K to a complex F . (For example, if one wants to resolve

the link (x : I), where x is a regular sequence in P, I is a perfect ideal in P,
∧•K

resolves P/(x), and F resolves P/I, then one might start with such an α.) At any
rate, if F is a DG-algebra, then one need only describe a map α1 : K→ F1, then one
can take the rest of α to be a map of rings.

2. Let A be the ring P/I, where I is an ideal in a regular local ring (P,m,k). If the
minimal resolution F of A is a DG-algebra, then Avramov proved that the Eilenberg-
Moore spectral sequence degenerates. When this happens many questions about
the ring A may be translated into questions about the Koszul homology algebra
TorP(A,kkk). This technique has led to the following theorems in the case when

(∗∗) A has small codimension or small linking number:

– the Poincaré series of finitely generated A-modules have been calculated,

– the asymptotics of the Betti numbers of finitely generated A-modules has been
determined,

– the Bass series of finitely generated A-modules has been found,

– (A-I-Nasseh-SW) if M and N are finitely generated A-modules and TorA
i (M,N)=

0 for all large i, then M or N has finite projective dimension,

– (A-I-Nasseh-SW) if A is not Gorenstein and not an embedded deformation,
then A is G-regular in the sense that every totally reflexive module over such a ring
is free.

3. (This is a project with Rebecca R.G. and Adela Vraciu.) Let J be generated by a
regular sequence of length four in the commutative Noetherian ring P and f be an
element of P. Then to resolve J P

( f ) over P/( f ) it suffices

(a) to resolve P/(J : f ) over P,
(b) use the DG-structure on the resolution of (a), and
(c) use one more ingredient which is built out of (b).
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4. WHICH CHANGE TO THE OLD THEOREM IS THE IMPORTANT CHANGE?

I promised to remove the hypotheses P is local, P is Gorenstein, and F is minimal
from the old theorem.

I suspect that P is Gorenstein is not used in the original result.
I know that F is minimal is NOT needed in the old result. In the project with

Rebecca and Adela, sometimes one wants to use a resolution of P/(J : f ) which
is not a minimal resolution. I wondered if the non-minimal resolution still is a
DG-algebra. The answer is yes.

An arbitrary resolution F (as described in the hypotheses of the Theorem from
the beginning of the talk) over a local ring is isomorphic to a minimal resolution
plus

0→ E∗1
spot 3

[
0
∼=∗

]
−−−→

E2
⊕
E∗2

spot 2

[∼= 0
]

−−−−−→ E1

spot 1
→ 0

One can easily extend the multiplication on the minimal resolution to a multiplica-
tion on the direct sum.

(This observation is the starting point of the present project.)
Removing the hypothesis “local” is much sneakier. The hypothesis local is used

in two main spots in the original proof.

5. AN OUTLINE OF THE PROOF OF THE THEOREM, WITH A SPECIAL EMPHASIS

ON WHERE THE ORIGINAL HYPOTHESIS “LOCAL” HAD BEEN USED.

An outline of the proof follows.

Step 1. Find maps ψ3 : F1⊗F3→ F4 and ψ4 : D2F2→ F4 such that

(a) ψ3 and ψ4 satisfy the product rule for 0 = x1 · x4 and 0 = x2 · x3, and
(b) ψ3 is a perfect pairing and x2 7→ψ4(x2 ·−) is an isomorphism F2→Hom(F2,F4)

Step 2. Take ψ3 and ψ4 from Step 1 to be the multiplication. Make
ψ1 : F1⊗F1→ F2 do all the work. That is, figure out what ψ1 must do in order for
ψ1, ψ2, ψ3, ψ4 to be the multiplication, where ψ2 is defined to make
y1(x1x2) = (y1x1)x2:

ψ3(y1⊗ψ2(x1⊗ x2)) = ψ4(ψ1(y1⊗ x1) · x2).

Of course, this definition makes sense because ψ3 is a perfect pairing.
It turns out that ψ1 must satisfy 3 hypotheses.

(a) one differential condition for F1⊗F1→ F2,
(b) one differential condition for F1⊗F2→ F3, and
(c) ψ1 factors through

∧2 F1.
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Step 3. Prove that there exists a ψ1 which satisfies all of the conditions of Step 2.

Here is how Step 3 turns out.

Step 1.(a) is easy. I will show it to you if I have time.

Step 1.(b) is obvious if P is local. (Again, I will show it to you if I have time.) It is
not obvious in general. (I used the Theresa May approach.)

It is not hard to satisfy to find a ψ1 which satisfies conditions 2.(a) and 2.(b). One
then modifies ψ1 (numerous times) to make the ultimate ψ1 satisfy condition 2.(c).
The proof in the local case is spread over two papers. The first paper proves the
result when 2 is a unit (by dividing by 2). The second paper proves the result when
3 is a unit (by dividing by 3). Of course, in a local ring, either 2 is a unit or 3 is a
unit. The present argument multiplies instead of dividing. It solves 2n times 2.(a),
2.(b), and 2.(c), for some large n, and it solves 3 times 2.(a), 2.(b), and 2.(c) and
then it solves the problem by taking the appropriate integral linear combination of
the two solutions.

6. HOW TO GET STARTED.

We learned the technique that is used in the proof the Buchsbaum-Eisenbud Am.
J. paper. The technique is similar to the Tate method of killing cycles. One kills
cycles of even degree with exterior variables and one kills cycles of odd degree with
divided power variables.

The maps on the top from a complex. The maps on the bottom are a resolution.
The comparison theorem yields a map of complexes from the top to the bottom.
Focus on ψ3 and ψ4. The fact that the left most square commutes ensures that

0 = d1(x1) · x4−ψ3(x1⊗d3(x3)) and

0 = ψ3(d2(x2)⊗ x3)+ψ4(x2 ·d3(x3)).

F2⊗F3
⊕

F1⊗F4

��


1⊗d3 0
d2⊗1 −1⊗d4

0 d1⊗1


//

D2F2
⊕

F1⊗F3
⊕
F4

c4=
[
ψ4 ψ3 idF4

]
��

[
d2 −1⊗d3 0
0 d1⊗1 d4

]
//
F1⊗F2
⊕
F3

c3=
[
ψ2 idF3

]
��

[
−1⊗d2 0
d1⊗1 d3

]
//

∧2 F1
⊕
F2

c2=
[
ψ1 idF2

]
��

[
d1 d2

]
// F1

d1 //

=

��

F0

=

��
0 // F4

d4 // F3
d3 // F2

d2 // F1
d1 // F0.

We modify ψ3 and ψ4 in order to make them induce the appropriate isomor-
phisms. (No modification is needed in the local case.) In the 2n part of the argu-
ment, we keep ψ3 and ψ4, ignore the given ψ1 and ψ2, and build a new ψ1 (and
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ψ2) from scratch! In the 3 part of the argument we modify the ψ1 and ψ2 that come
from the Buchsbaum-Eisenbud-Tate technique.

7. HERE IS WHY NO MODIFICATION OF ψ3 AND ψ4 IS NEEDED IN THE LOCAL

CASE.

Let (−)∨ denote the functor HomP(−,F4). Define

F

Φ

��

0 // F4
d4 //

Φ4
��

F3
d3 //

Φ3
��

F2
d2 //

−Φ2
��

F1
d1 //

Φ1
��

F0

Φ0
��

F∨ 0 // F∨0
d∨1 // F∨1

d∨2 // F∨2
d∨3 // F∨3

d∨4 // F∨4
by

Φ0(x0) = x0 ·−,
Φ1(x1) = ψ3(x1⊗−),
Φ2(x2) = ψ4(x2 ·−),
Φ3(x3) = ψ3(−⊗ x3), and

Φ4(x4) =−· x4.

It is easy to see that Φ is a map of complexes.
If P is a local ring and F is a minimal resolution, then Φ is a map of complexes

from one minimal resolution of P/ imd1 to another minimal resolution of P/ imd1

and Φ0 is an isomorphism. It follows immediately that Φ is an isomorphism of
complexes.


